Wavelength-sensitive energy storage in Sr3MgSi2O8:Eu2+,Dy3+

  • Mika Lastusaari
  • Adrie J. J. Bos
  • Pieter Dorenbos
  • Taneli Laamanen
  • Marja Malkamäki
  • Lucas C. V. Rodrigues
  • Jorma Hölsä


Optical energy storage materials can store energy when exposed to radiation and subsequently release it as light after thermal or optical stimulation. Such materials are thus employed in, e.g., detectors, dosimetry, self-lit signs, and imaging. In, e.g., dosimetry, the response of the material is correlated with the absorbed energy, but no distinction of different radiation energies can be achieved. In this work, Sr3MgSi2O8:Eu2+,Dy3+ was studied with thermoluminescence (TL) initiated by irradiating the material with photon energies between 2.6 (480) and 5.4 eV (230 nm). The TL glow curves revealed that the material has two main traps. Both the overall TL intensity and the TL intensity ratio between the two traps strongly depend on the photon energy of the irradiation. A mechanism of energy storage and charge carrier release in this material was constructed from the results obtained.


Energy storage Persistent luminescence Sr3MgSi2O8 Europium Thermoluminescence XANES 


  1. 1.
    McKeever SWS. Optically stimulated luminescence: a brief overview. Radiat Meas. 2011;46:1336–41.CrossRefGoogle Scholar
  2. 2.
    Bos AJJ. Theory of thermoluminescence. Radiat Meas. 2007;41:S45–56.CrossRefGoogle Scholar
  3. 3.
    McKeever SWS, Moscovitch M. Topics under debate—on the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosim. 2003;104:263–79.CrossRefGoogle Scholar
  4. 4.
    Yukihara EG, Coleman AC, Doull BA. Passive temperature sensing using thermoluminescence: laboratory tests using Li2B4O7:Cu,Ag, MgB4O7:Dy,Li and CaSO4:Ce,Tb. J Lumin. 2014;146:515–26.CrossRefGoogle Scholar
  5. 5.
    Wintle AG. Fifty years of luminescence dating. Archaeometry. 2008;50:276–312.CrossRefGoogle Scholar
  6. 6.
    Lin Y, Tang Z, Zhang Z, Wang X, Zhang J. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett. 2001;20:1505–6.CrossRefGoogle Scholar
  7. 7.
    Lin Y, Tang Z, Zhang Z, Nan CW. Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R=Ca, Sr, Ba) phosphors. J Alloys Compd. 2003;348:76–9.CrossRefGoogle Scholar
  8. 8.
    Lastusaari M, Eskola KO, Hölsä J, Jungner H, Laamanen T, Malkamäki M, Optical energy storage properties of Sr3MgSi2O8:Eu2+, R3+ materials, In: Proceedings in European Conference Solid State Chem (ECSSC XII). Münster, Germany, September 20–23, 2009.Google Scholar
  9. 9.
    Chen R, McKeever SWS. Theory of thermoluminescence and related phenomena. Singapore: World Scientific; 1997.CrossRefGoogle Scholar
  10. 10.
    Chung KS. TL glow curve analyzer v. 1.0.3. Korea: Korea Atomic Energy Research Institute and Gyeongsang National University; 2008.Google Scholar
  11. 11.
    Hwangbo S, Jeon Y-S, Kang B-A, Kim Y-S, Hwang K-S, Kim J-T. Sol-gel derived blue-emitting Sr3MgSi2O8:Eu2+ oxide phosphor for ultraviolet emitting diodes. J Ceram Proc Res. 2010;11:513–5.Google Scholar
  12. 12.
    Pan W, Ning G-L, Wang J-H, Yuan L. A Novel synthesis of alkaline earth silicate phosphor Sr3MgSi2O8:Eu2+,Dy3+. Chin J Chem. 2007;25:605–8.CrossRefGoogle Scholar
  13. 13.
    van den Eeckhout K, Bos AJJ, Poelman D, Smet P. Revealing trap depth distributions in persistent phosphors. Phys Rev B. 2013;87:045126.CrossRefGoogle Scholar
  14. 14.
    Brito HF, Hassinen J, Hölsä J, Jungner H, Laamanen T, Lastusaari M, Malkamäki M, Niittykoski J, Novák P, Rodrigues LCV. Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. J Therm Anal Calorim. 2011;105:657–62.CrossRefGoogle Scholar
  15. 15.
    Rodrigues LCV, Stefani R, Brito HF, Felinto MCFC, Hölsä J, Lastusaari M, Laamanen T, Malkamäki M. Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+. J Solid State Chem. 2010;183:2365–71.CrossRefGoogle Scholar
  16. 16.
    Bettentrup H, Eskola KO, Hölsä J, Kotlov A, Lastusaari M, Malkamäki M. Luminescence properties of Eu3+ and TiIV/ZrIV doped yttrium oxysulfides (Y2O2S:Eu3+,TiIV/ZrIV). IOP Conf Ser Mater Sci Eng. 2010;15:012085.CrossRefGoogle Scholar
  17. 17.
    Bos AJJ, Vijverberg RNM, Piters TM, McKeever SWS. Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. J Phys D Appl Phys. 1992;25:1249–57.CrossRefGoogle Scholar
  18. 18.
    Yukihara EG, Whitley VH, Polf JC, Klein DM, McKeever SWS, Akselrod AE, Akselrod MS. The effects of deep trap population on the thermoluminescence of Al2O3:C. Radiat Meas. 2003;37:627–38.CrossRefGoogle Scholar
  19. 19.
    Lakshmanan AR, Vohra KG. Gamma radiation induced sensitization and photo-transfer in Mg2SiO4:Tb TLD phosphor. Nucl Instr Meth. 1979;159:585–92.CrossRefGoogle Scholar
  20. 20.
    Lei B, Machida K, Horikawa T, Hanzawa H, Kijima N, Shimomura Y, Yamamoto H. Reddish-orange long-lasting phosphorescence of Ca2Si5N8:Eu2+,Tm3+ phosphor. J Electrochem Soc. 2010;157:J196–201.CrossRefGoogle Scholar
  21. 21.
    Smet P, van den Eeckhout K, Bos AJJ, van der Kolk E, Dorenbos P. Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M: Ca, Sr, and Ba) persistent phosphors. J Lumin. 2012;132:682–9.CrossRefGoogle Scholar
  22. 22.
    Dorenbos P. Modeling the chemical shift of lanthanide 4f electron binding energies. Phys Rev B. 2012;85:165107.CrossRefGoogle Scholar
  23. 23.
    Dorenbos P. The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE=La, Gd, Y, Lu, Sc) compounds. J Phys Condens Matter. 2013;25:225501.CrossRefGoogle Scholar
  24. 24.
    Dorenbos P. Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds. J Lumin. 2013;135:93–104.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Mika Lastusaari
    • 1
    • 2
  • Adrie J. J. Bos
    • 3
  • Pieter Dorenbos
    • 3
  • Taneli Laamanen
    • 1
  • Marja Malkamäki
    • 1
  • Lucas C. V. Rodrigues
    • 1
    • 4
  • Jorma Hölsä
    • 1
    • 2
    • 4
  1. 1.Department of ChemistryUniversity of TurkuTurkuFinland
  2. 2.Turku University Centre for Materials and Surfaces (MatSurf)TurkuFinland
  3. 3.Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
  4. 4.Instituto de QuímicaUniversidade de São PauloSão Paulo-SPBrazil

Personalised recommendations