Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 3, pp 1393–1402 | Cite as

Thermogravimetric analysis of kinetic characteristics of K2CO3-impregnated mesoporous silicas in low-concentration CO2

  • Yafei Guo
  • Chuanwen ZhaoEmail author
  • Changhai Li
Article

Abstract

The requirement for self-sustained and long-duration human operations in confined spaces including submarines, spacecrafts, or underground citadels has made ambient removal of low-concentration CO2 a critical technology. Mesoporous silica materials have been regarded as promising carriers to support active components for CO2 sorption. The CO2 sorption kinetic of mesoporous silica-supported adsorbent is an important parameter to be assessed. In this paper, K2CO3-impregnated mesoporous silicas were prepared by impregnating K2CO3 on MCM-41, SBA-15, and silica gel (SG) in ethanol solution, respectively. The CO2 sorption experiments were performed in a simulated confined space atmosphere of 1.0 % CO2, 2.0 % H2O, and 293–333 K using thermogravimetric analysis. The kinetic performances of the sorbents were evaluated by fitting the experimental data to the shrinking core model. K2CO3/SG exhibited the optimum carbonation kinetic performance. The apparent activation energies for chemical reaction-controlled region and internal diffusion-controlled region are 3.95 and 64.87 kJ mol−1, respectively. To obtain the specific carbonation kinetic mechanism, a double exponential model was used to simulate the carbonation process of K2CO3/SG. The apparent activation energies for H2O diffusion–hydration and CO2 diffusion–carbonation stages are 8.40 and 4.32 kJ mol−1, respectively. H2O diffusion–hydration is the rate limiting step in the whole carbonation process.

Keywords

Thermogravimetric analysis Carbonation kinetic K2CO3-impregnated mesoporous silicas Low-concentration CO2 

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 51206155), the Science Foundation of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, and the Fundamental Research Funds for the Central Universities of China (WK2320000023) is sincerely acknowledged.

References

  1. 1.
    Wang Q, Luo JZ, Zhong ZY, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci. 2011;4:42–55.CrossRefGoogle Scholar
  2. 2.
    Wang JY, Huang L, Yang RY, Zhang Z, Wu JW, Gao YS, Wang Q, O’Hare D, Zhong ZY. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci. 2014;. doi: 10.1039/C4EE01647E.Google Scholar
  3. 3.
    Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res. 2011;51:1438–63.CrossRefGoogle Scholar
  4. 4.
    D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed. 2010;49:6058–82.CrossRefGoogle Scholar
  5. 5.
    Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854.CrossRefGoogle Scholar
  6. 6.
    Rouchon L, Favergeon L, Pijolat M. Analysis of the kinetic slowing down during carbonation of CaO by CO2. J Therm Anal Calorim. 2013;113:1145–55.CrossRefGoogle Scholar
  7. 7.
    Rouchon L, Favergeon L, Pijolat M. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide. J Therm Anal Calorim. 2014;116:1181–8.CrossRefGoogle Scholar
  8. 8.
    Li YJ, Liu HL, Sun RY, Wu SM, Lu CM. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature. J Therm Anal Calorim. 2012;110:685–94.CrossRefGoogle Scholar
  9. 9.
    Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. CO2 capture behavior of shell during calcination/carbonation cycles. Chem Eng Technol. 2009;32:1176–82.CrossRefGoogle Scholar
  10. 10.
    Li YJ, Wang WJ, Xie X, Sun RY, Wu SM. SO2 retention by highly cycled modified CaO-based sorbent in calcium looping process. J Therm Anal Calorim. 2014;116(2):955–62.CrossRefGoogle Scholar
  11. 11.
    Li YJ, Liu HL, Wu SM, Sun RY, Lu CM. Sulfation behavior of CaO from long-term carbonation/calcination cycles for CO2 capture at FBC temperatures. J Therm Anal Calorim. 2013;111(2):1335–43.CrossRefGoogle Scholar
  12. 12.
    Wang SP, Yan SL, Ma XB, Gong JL. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci. 2011;4:3805–19.CrossRefGoogle Scholar
  13. 13.
    Zhao CW, Chen XP, Anthony EJ, Jiang X, Duan LB, Wu Y, Dong W, Zhao CS. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog Energy Combust. 2013;39:515–34.CrossRefGoogle Scholar
  14. 14.
    Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T. Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Ind Eng Chem Res. 1998;37:185–91.CrossRefGoogle Scholar
  15. 15.
    Zhao CW, Chen XP, Zhao CS, Liu YK. Carbonation and hydration characteristics of dry potassium-based sorbents for CO2 capture. Energy Fuels. 2009;23:1766–9.CrossRefGoogle Scholar
  16. 16.
    Zhao CW, Chen XP, Zhao CS. Effect of crystal structure on CO2 capture characteristics of dry potassium-based sorbents. Chemosphere. 2009;75:1401–4.CrossRefGoogle Scholar
  17. 17.
    Lee DK, Min DY, Seo H, Kang NY, Choi WC, Park YK. Kinetic expression for the carbonation reaction of K2CO3/ZrO2 sorbent for CO2 capture. Ind Eng Chem Res. 2013;52:9323–9.CrossRefGoogle Scholar
  18. 18.
    Zhao CW, Chen XP, Zhao CS. Carbonation behavior and the reaction kinetic of a new dry potassium-based sorbent for CO2 capture. Ind Eng Chem Res. 2012;51:14361–6.CrossRefGoogle Scholar
  19. 19.
    Chaikittisilp W, Khunsupat R, Chen TT, Jones CW. Poly (allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind Eng Chem Res. 2011;50:14203–10.CrossRefGoogle Scholar
  20. 20.
    Liu SH, Wu CH, Lee HK, Liu SB. Highly stable amine-modified mesoporous silica materials for efficient CO2 capture. Top Catal. 2010;53:210–7.CrossRefGoogle Scholar
  21. 21.
    Son WJ, Choi JS, Ahn WS. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mat. 2008;13:31–40.CrossRefGoogle Scholar
  22. 22.
    Zhao HL, Hu J, Wang JJ, Zhou LH, Liu LH. CO2 Capture by the amine-modified mesoporous materials. Acta Phys-Chim Sin. 2007;23:801–6.CrossRefGoogle Scholar
  23. 23.
    Mello MR, Phanon D, Silveira GQ, Llewellyn PL, Ronconi CM. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mat. 2011;143:174–9.CrossRefGoogle Scholar
  24. 24.
    Klinthong W, Chao KJ, Tan CS. CO2 Capture by as-synthesized amine-functionalized MCM-41 prepared through direct synthesis under basic condition. Ind Eng Chem Res. 2013;52:9834–42.CrossRefGoogle Scholar
  25. 25.
    Barbosa MN, Araujo AS, Galvão LP, Silva EF, Santos AG, Luz GE Jr, Fernandes VJ Jr. Carbon dioxide adsorption over DIPA functionalized MCM-41 and SBA-15 molecular sieves. J Therm Anal Calorim. 2011;106:779–82.CrossRefGoogle Scholar
  26. 26.
    Stuckert NR, Yang RT. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ Sci Technol. 2011;45:10257–64.CrossRefGoogle Scholar
  27. 27.
    Wang XP, Yu JJ, Cheng J, Hao ZP, Xu ZP. High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environ Sci Technol. 2007;42:614–8.CrossRefGoogle Scholar
  28. 28.
    Gregg SJ, Sing KSW. Adsorption, surface area, and porosity. 2nd ed. London: Academic Press; 1995.Google Scholar
  29. 29.
    Yin XS, Song M, Zhang QH, Yu JG. High-temperature CO2 capture on Li6Zr2O7: experimental and modeling studies. Ind Eng Chem Res. 2010;49:6593–8.CrossRefGoogle Scholar
  30. 30.
    Venegas MJ, Fregoso-Israel E, Escamilla R, Pfeiffer H. Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: study of the particle size effect. Ind Eng Chem Res. 2007;46:2407–12.CrossRefGoogle Scholar
  31. 31.
    Ávalos-Rendón T, Casa-Madrid J, Pfeiffer H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. J Phys Chem A. 2009;113:6919–23.CrossRefGoogle Scholar
  32. 32.
    Alcérreca-Corte I, Fregoso-Israel E, Pfeiffer H. CO2 absorption on Na2ZrO3: a kinetic analysis of the chemisorption and diffusion processes. J Phys Chem C. 2008;112:6520–5.CrossRefGoogle Scholar
  33. 33.
    Rodríguez-Mosqueda R, Pfeiffer H. Thermokinetic analysis of the CO2 Chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. J Phys Chem A. 2010;114:4535–41.CrossRefGoogle Scholar
  34. 34.
    Zhao CW, Guo YF, Li CH, Lu SX. Carbonation behavior of K2CO3/AC in low reaction temperature and CO2 concentration. Chem Eng J. 2014;254:524–30.CrossRefGoogle Scholar
  35. 35.
    Ebune GE. Carbon dioxide capture from power plant flue gas using regenerable activated carbon powder impregnated with potassium carbonate. Youngstown State University, 2008.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations