Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 1, pp 187–194 | Cite as

The effect of volatiles on the measurement of the reaction heat by differential scanning calorimetry

  • Eduard García
  • Daniel Sánchez-Rodríguez
  • Joan Pere López-Olmedo
  • Jordi Farjas
  • Pere RouraEmail author


When gases evolve during a chemical reaction, a fraction of the reaction heat is lost with them. We have analyzed, both theoretically and experimentally, the deviations that this effect can produce on the determination of the reaction heat by differential scanning calorimetry (DSC). It is shown that, even in the absence of gas overheating, deviations related to variations in the sample heat capacity can be substantial in experiments involving very intense DSC peaks. However, experiments performed on thermal decomposition of metal organic salts and on evaporation of liquids have shown that deviations usually arise from gas overheating.


DSC Reaction heat Boiling Decomposition Overheating Volatiles 

List of symbols


Transformed fraction


Heating rate of the reference temperature


Heat capacity of the sample placed inside the pan


Heat capacity of the solid sample at the beginning and at the end of the reaction


Heat capacity of the evolved gas

cpS, cpL, cpG

Specific heat capacity (per unit mass) at constant pressure of solid, liquid and gas


Pan heat capacity


DSC value after baseline subtraction


Enthalpy of reaction


Gas overheating above T S


Corrections to the measured heat due to gas evolution (see main text)


Latent heat of boiling


Latent heat of evaporation


Mass of the sample remaining inside the pan


DSC peak area (after baseline subtraction)

\( \dot{q}_{{}} \)

Heat power exchanged due to a chemical reaction \( \left( {\Delta H = - \int {\dot{q}} \,{\text{d}}t} \right) \)

\( \dot{Q}_{\text{REF}} \)

Heat power flowing through the “sample” side of the DSC sensor

\( \dot{Q}_{\text{S}} \)

Idem through the “reference” side


Thermal resistance of the DSC sensor


Boiling point


Temperature at the “reference” side of the DSC sensor


Temperature at the “sample” side of the DSC sensor


Time constant characteristic of the DSC signal



This work was partially funded by the Spanish Programa Nacional de Materiales through projects MAT2011-28874-C02-02 and by the Generalitat de Catalunya contract No. 2009SGR-185. The authors thank the University of Girona for the PhD fellowship granted to Daniel Sánchez-Rodríguez and for the use of the thermal analysis facilities (Serveis Tècnics de Recerca).


  1. 1.
    Zemansky MW, Dittman RH. Heat and thermodynamics, Ch. 10. 6th ed. New York: McGraw-Hill; 1981.Google Scholar
  2. 2.
    Sanchez-Rodriguez D, Farjas J, Roura P, Ricart S, Mestres N, Obradors X, Puig T. Thermal analysis for low temperature synthesis of oxide thin films from chemical solutions. J Phys Chem C. 2013;117:20133–8.CrossRefGoogle Scholar
  3. 3.
    HöhneGWH Hemminger W, Flammersheim H-J. Differential scanning calorimetry: an introduction for practitioners. Berlin: Springer-Verlag; 1996.Google Scholar
  4. 4.
    Sanchez-Rodriguez D, Eloussifi H, Farjas J, Roura P, Dammak M. Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta. 2014;589:37–46.CrossRefGoogle Scholar
  5. 5.
    Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B, Spitzer D, Moulard H, Dilhan D. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.CrossRefGoogle Scholar
  6. 6.
    Schwartz R, Schneller T, Waser R. Chemical solution deposition of electronic oxide films. C. R. Chimie. 2004;7:433–61.CrossRefGoogle Scholar
  7. 7.
    Roura P, Farjas J, Camps J, Ricart S, Arbiol J, Puig T, Obradors X. Decomposition processes and structural transformations of cerium propionate into nanocrystalline ceria at different oxygen partial pressures. J Nanopart Res. 2011;13:4085–96.CrossRefGoogle Scholar
  8. 8.
    Eloussifi H, Farjas J, Roura P, Camps J, Dammak M, Ricart S, Puig T, Obradors X. Evolution of Yttrium trifluoroacetate during thermal decomposition. J Therm Anal Calorim. 2012;108:589–96.CrossRefGoogle Scholar
  9. 9.
    Farjas J, Camps J, Roura P, Ricart S, Puig T, Obradors X. The thermal decomposition of barium trifluoroacetate. Thermochim Acta. 2012;544:77–83.CrossRefGoogle Scholar
  10. 10.
    Butrow AB, Seyler RJ. Vapor pressure by DSC: extending ASTM E 1782 below 5 kPa. Thermochim Acta. 2003;402:145–52.CrossRefGoogle Scholar
  11. 11.
    Contreras MD, Girela F, Parera A. The perfection of a method for the determination of the temperature vapor-pressure function of liquids by differential scanning calorimetry. Thermochim Acta. 1993;219:167–72.CrossRefGoogle Scholar
  12. 12.
    Cedeño FO, Prieto MM, Espina A, Garcia JR. Fast method for the experimental determination of vaporization enthalpy by differential scanning calorimetry. J Therm Anal Calorim. 2003;73:775–81.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Eduard García
    • 1
    • 3
  • Daniel Sánchez-Rodríguez
    • 1
  • Joan Pere López-Olmedo
    • 2
  • Jordi Farjas
    • 1
  • Pere Roura
    • 1
    Email author
  1. 1.GRMT, Department of PhysicsUniversity of GironaGironaSpain
  2. 2.UAT, Serveis Generals de RecercaUniversity of GironaGironaSpain
  3. 3.Industrias Cerámicas BrancósLa BisbalSpain

Personalised recommendations