Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1119–1127 | Cite as

Thermal analysis on historical leather bookbinding treated with PEG and hydroxyapatite nanoparticles

  • Amir Ershad-LangroudiEmail author
  • Akram Mirmontahai


Thermal analysis approaches give the opportunity to investigate structural changes in historical leather like as dehydration, crystallization, and melting process. An historical leather sample from nineteenth century was considered in this study. The leather samples were treated with a suspension of nano-hydroxyapatite and polyethylene glycol 400 (PEG 400) in an aqueous solution. The treatment effects on the structural changes in historical leather were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). DSC technique has been employed to study the thermal-associated changes in historical leather to an artificial aging and the conservation of nanocomposite treatment. Moreover, thermogravimetric analysis and differential thermal gravimetry (TG–DTG) are used as useful methods for the investigation of the mass losses of the treated and untreated samples at the progressive heating in N2 gas flow. Furthermore, scanning electron microscopy studies indicated the collagen fibril changes in treated sample in comparison with those of untreated sample and after accelerated aging test.


Thermal analysis Leather Nanocomposite Hydroxyapatite (HA) Polyethylene glycol (PEG) 


  1. 1.
    Budrugeac P, Cucos A, Miu L. The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. J Therm Anal Calorim. 2011;104:439–50.CrossRefGoogle Scholar
  2. 2.
    Cucos A, Budrugeac P, Mitrea S, Hajdu C. The influence of sodium chloride on the melting temperature of collagen crystalline region in parchments. J Therm Anal Calorim. 2013;111:467–73.CrossRefGoogle Scholar
  3. 3.
    Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll. 2011;25:1813–27.CrossRefGoogle Scholar
  4. 4.
    Krishnamoorthy G, Sadulla S, Sehgal PK, Mandal AB. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids. J Hazard Mater. 2012;215–216:173–82.CrossRefGoogle Scholar
  5. 5.
    de Wolf FA. Chapter V collagen and gelatin. Prog Biotechnol. 2003;23:133–218.CrossRefGoogle Scholar
  6. 6.
    Horie CV. Materials for conservation. second ed. Oxford: Elsevier; 2010.Google Scholar
  7. 7.
    Johnson A. Evaluation of the use of SC6000 in conjunction with klucel G as a conservation treatment for bookbinding leather: notes on a preliminary study. J Inst Conserv. 2013;36:125–44.CrossRefGoogle Scholar
  8. 8.
    Kite M, Thomson R. Conservation of leather and related materials, Butterworth-Heinemann series in Conservation and Museology. Oxford: Elsevier; 2006.Google Scholar
  9. 9.
    Liu CK, Latona NP, DiMaio GL. Lubrication of leather with polyethylene glycol. J Am Leather Chem Assoc (JALCA). 2002;97:355–68.Google Scholar
  10. 10.
    Liu CK, Latona NP. Lubrication of leather with mixtures of polyethylene glycol and oil. J Am Leather Chem Assoc (JALCA). 2006;101:132–9.Google Scholar
  11. 11.
    Chahine C. Changes in hydrothermal stability of leather and parchment with deterioration: a DSC study. Thermochim Acta. 2000;365:101–10.CrossRefGoogle Scholar
  12. 12.
    Siggel L, Molnar F. Computer modelling of a type-1 collagen fibril in water. 1. Model development and validation. J Am Leather Chem Assoc (JALCA). 2006;101:179–90.Google Scholar
  13. 13.
    Blee A, Matisons JG. Nanoparticles and the conservation of cultural heritage. Mater Forum. 2008;32:121–8.Google Scholar
  14. 14.
    Odlyha M. Introduction to the preservation of cultural heritage. J Therm Anal Calorim. 2011;104:399–403.CrossRefGoogle Scholar
  15. 15.
    Baglioni P, Giorgi R, Dei L. Soft condensed matter for the conservation of cultural heritage. C R Chim. 2009;12:61–9.CrossRefGoogle Scholar
  16. 16.
    Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Dei L. Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implications in archaeology and paleontology. Langmuir. 2014;30:660–8.CrossRefGoogle Scholar
  17. 17.
    Plavan V, Miu L, Gordienko I, Ibragimova A, Gavrilyuk N. Determination of the amino acid composition, structure and properties of the archaeological leather before and after restoration. Rev Chim. 2013;64:603–5.Google Scholar
  18. 18.
    Baglioni P, Giorgi R, Chelazzi D. Nano-materials for the conservation and preservation of movable and immovable artworks. Int J Herit Digit Era. 2012;1:313–8.CrossRefGoogle Scholar
  19. 19.
    Baglioni P, Chelazzi D, Giorgi R, Poggi G. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification. Langmuir. 2013;29:5110–22.CrossRefGoogle Scholar
  20. 20.
    Ionita I, Dragne AM, Gaidau C, Dragomir T. Collagen fluorescence measurements on nanosilver treated leather. Rom Rep Phys. 2010;62:634–43.Google Scholar
  21. 21.
    Odlyha M, Bozec L, Dahlin E, Grøntoft T, Chelazzi D, Baglioni P, Bonaduce I, Colombini MP, Larsen R, Scharff M, Hackney S, Thickett D. Memori project: evaluation of damage to exposed organic-based heritage materials and nanoforart: evaluation of nanoparticle based conservation treatment. Int J Herit Digit Era. 2012;1:319–24.CrossRefGoogle Scholar
  22. 22.
    Gaidau C, Giurginca M, Dragomir T, Peticac A, Chen W. Study of collagen and leather functionalization by using metallic nanoparticles. J Optoelectron Adv Mater. 2010;12:2158–64.Google Scholar
  23. 23.
    Petica A, Gaidau C, Ma J, Simion D, Xu Q, Niculescu M. Antimicrobial electrochemically obtained nanosilver solutions for leather and furskin treatment. Rev Chim. 2013;64:1329–34.Google Scholar
  24. 24.
    Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Dei L. Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implications in archaeology and paleontology. Langmuir. 2014;30:660–8.CrossRefGoogle Scholar
  25. 25.
    Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011;12:1641–50.CrossRefGoogle Scholar
  26. 26.
    Rajamanickam R, Kumari S, Kumar D, Ghosh S, Kim JC, Tae G, Gupta SS, Kumaraswamy G. Soft colloidal scaffolds capable of elastic recovery after large compressive strains. Chem Mater. 2014;26:5161–8.CrossRefGoogle Scholar
  27. 27.
    Ershad-Langroudi A, Mirmontahai A. Hydroxyapatite nanoparticles and polythylene glycol treatment of historical leather Mechanical properties. J Am Leather Chem Assoc (JALCA). 2013;108:449–56.Google Scholar
  28. 28.
    Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.CrossRefGoogle Scholar
  29. 29.
    Kronick PL, Cooke P. Thermal stabilization of collagen fibers by calcification. Connect Tissue Res. 1996;33:275–82.CrossRefGoogle Scholar
  30. 30.
    Nielsen-Marsh CM, Hedges REM, Mann T, Collins MJ. A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim Acta. 2000;365:129–39.CrossRefGoogle Scholar
  31. 31.
    Okamoto Y, Saeki K. Phase transition of collagen and gelatin. Kolloid Z Z Polym. 1964;194:124–35.CrossRefGoogle Scholar
  32. 32.
    Nguyen AL, Vu BT, Wilkes GL. The dynamic mechanical, dielectric, melting behaviour of reconstructed collagen. Biopolymers. 1974;13:1023–37.CrossRefGoogle Scholar
  33. 33.
    Samoillan V, Dandrirand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L, Spina M. Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res. 1999;46:531–8.CrossRefGoogle Scholar
  34. 34.
    Pietrucha K. Changes in denaturation and rheological properties of collagen–hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol. 2005;36:299–304.CrossRefGoogle Scholar
  35. 35.
    Budrugeac P, Miu L. The suitability of DSC method for damage assessment and certification of historical leathers and parchments. J Cult Herit. 2008;9:146–53.CrossRefGoogle Scholar
  36. 36.
    Badea E, Della Gatta G, Usacheva T. Effects of temperature and relative humidity on fibrillar collagen in parchment: a micro differential scanning calorimetry (micro DSC) study. Polym Degrad Stabil. 2012;97:346–53.CrossRefGoogle Scholar
  37. 37.
    Cucos A, Budrugeac P, Miu L. DMA and DSC studies of accelerated aged parchment and vegetable-tanned leather samples. Thermochim Acta. 2014;583:86–93.CrossRefGoogle Scholar
  38. 38.
    Budrugeac P, Miu L, Bocu V, Wortmann FJ, Popescu C. The use of thermal analysis methods in investigation of the thermal degradation of collagen-based materials that are supports of cultural and historic objects. J Therm Anal Calorim. 2003;72:1057–64.CrossRefGoogle Scholar
  39. 39.
    Budrugeac P, Miu L, Popescu C, Wortmann FJ. Identification of collagen-based materials that are supports of cultural and historical objects. J Therm Anal Calorim. 2004;79:975–85.CrossRefGoogle Scholar
  40. 40.
    Popescu C, Budrugeac P, Wortmann FJ, Miu L, Demco DE, Baias M. Assessment of collagen-based materials which are supports of cultural and historical objects. Polym Degrad Stab. 2008;93:976–82.CrossRefGoogle Scholar
  41. 41.
    Odlyha M, Foster GM, Cohen NS, Larsen R. Characterisation of leather samples by non-invasive dielectric and thermomechanical techniques. J Therm Anal Calorim. 2000;59:587–600.CrossRefGoogle Scholar
  42. 42.
    Chelazzi D, Giorgi R, Baglioni P. Nanotechnology for vasa wood de-acidification. Macromol Symp. 2006;238:30–6.CrossRefGoogle Scholar
  43. 43.
    Nashy EHA, Essa MM, Hussain AI. Synthesis and application of methyl methacrylate/butyl acrylate copolymer nanoemulsions as efficient retanning and lubricating agents for chrome-tanned leather. J Appl Polym Sci. 2012;124:3293–301.CrossRefGoogle Scholar
  44. 44.
    Jaisankar SN, Ramalingam S, Subramani H, Mohan R, Saravanan P, Samanta D, Mandal AB. Cloisite-g-Methacrylic acid copolymer nanocomposites by graft from method for leather processing. Ind Eng Chem Res. 2013;52:1379–87.CrossRefGoogle Scholar
  45. 45.
    Shao Y. Ch3: chemical analysis of leather. In: Fan Q, editor. Chemical testing of textiles. Florida: CRC Press; 2005. p. 47–71.CrossRefGoogle Scholar
  46. 46.
    Hydroxyapatite Characterization in Sigma Aldrich Accessed 12 Jan 2015.
  47. 47.
    Polyethylene glycol 400 in Merck,MDA_CHEM-807485. Accessed 12 Jan 2015.
  48. 48.
    Della Gatta G, Badea E, Ceccarelli R, Usacheva T, Mašić A. Assessment of damage in old parchments by DSC and SEM. J Therm Anal Calorim. 2005;82:637–49.CrossRefGoogle Scholar
  49. 49.
    Badea E, Della Gatta G, Budrugeac P. Characterisation and evaluation of the environmental impact on historical parchments by differential scanning calorimetry. J Therm Anal Calorim. 2011;104:495–506.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Color, Resin & Surface Coating (CRSC) Department, Polymer Processing Faculty (PPF)Iran Polymer and Petrochemical Institute (IPPI)TehranIran

Personalised recommendations