Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1163–1171 | Cite as

Optical and thermal properties of (70 − x)SiO2xNa2O–15CaO–10Al2O3–5TiO2 (10 ≤ x ≤ 25) glasses

  • S. K. Arya
  • Bhupinder Kaur
  • Gurbinder Kaur
  • K. Singh
Article

Abstract

The optical and thermal properties are investigated for the (70 − x)SiO2xNa2O–15CaO–10Al2O3–5TiO2 (10 ≤ x ≤ 25) glasses using different characterization techniques. Kinetic parameters such as glass transition temperature, activation energy of glass transition (Eg), fluctuation-free volume (fg) and change in bulk thermal expansion coefficient (αf) are calculated for better understanding of glass structure. The Eg shows an increasing trend with the increase of Na2O mol%. Correlation has been established between the microvoids in the glass and physical parameters like density and molar volume. Theoretical parameters like optical basicity, oxide polarizability and electro negativities have been obtained and discussed in relation to non-bridging oxygen. Along with the band gap energy, Urbach energy as well as dispersive energy has also been obtained for all the glasses.

Keywords

UV–visible IR spectra X-ray diffraction Optical basicity Glass transition temperature Dilatometry 

References

  1. 1.
    Chaudhari C, Gautam DK. Analysis of SiO2/TiO2–SiO2/SiO2 coupled parallel waveguide structures using computer aided design techniques. Opt Commun. 2000;181:61.CrossRefGoogle Scholar
  2. 2.
    Hashimoto T, Uchida H, Takagi I, Nasu H, Kamiya K. Optical non-linearity of TiO2-containing glasses measured by Z-scan technique. J Non Cryst Solids. 1999;253:30.CrossRefGoogle Scholar
  3. 3.
    Shultz PC, Snyth HT. In: Douglas RW, Ellis B, editors. Proceedings of the third international conference on the physics of non-crystalline solids. London: Wiley-Interscience; 1970. p. 453.Google Scholar
  4. 4.
    Gahlot PS, Seth VP, Agarwal A, Kisore N, Gupta SK, Arora M, Goyal DR. Influence of ZnO on optical properties and dc conductivity of vanadyl doped alkali bismuthate glasses. Radiat Eff Defects Solids. 2004;159:216–23.CrossRefGoogle Scholar
  5. 5.
    Mocioiu OC, Zaharescu M, Atkinson I, Mocioiu A-M, Budrugeac P. Study of crystallization process of soda lead silicate glasses by thermal and spectroscopic methods. J Therm Anal Calorim. 2014;117:131–9.CrossRefGoogle Scholar
  6. 6.
    Morsi MM, El-Shennawi AWA. Some physical properties of silicate glasses containing TiO2 in relation to their structure. Phys Chem Glass. 1984;25:64–8.Google Scholar
  7. 7.
    Fujino S, Morinaga K. Material dispersion and its compositional parameter of oxide glasses. J Non Cryst Solids. 1997;222:316–20.CrossRefGoogle Scholar
  8. 8.
    Shakeri MS, Rezvani M. Optical properties and structural evaluation of Li2O–Al2O3–SiO2–TiO2 glassy semiconductor containing passive agent CeO2. Spectrochim Acta A. 2011;83:592–7.CrossRefGoogle Scholar
  9. 9.
    Mito T, Fujino S, Takebe H, Morinaga K, Todoroki S, Sakaguchi S. Refractive index and material dispersions of multi-component oxide glasses. J Non Cryst Solids. 1997;210:155–62.CrossRefGoogle Scholar
  10. 10.
    Fernandes HR, Tulyaganov DU, Ferreira JMF. Al2O3/K2O-containing non-stoichiometric lithium disilicate-based glasses, a study of crystallisation kinetics. J Therm Anal Calorim. 2013;112:1359–68.CrossRefGoogle Scholar
  11. 11.
    Kumar V, Pandey OP, Singh K. Structural and optical properties of barium borosilicate glasses. Phys B. 2010;405(1):204–7.CrossRefGoogle Scholar
  12. 12.
    Rutz HL, Day DE, Spencer CF. Properties of yttria-aluminoborate glasses. J Am Ceram Soc. 1990;73:1788–90.CrossRefGoogle Scholar
  13. 13.
    Shakeri MS, Rezvani M. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions. Spectrochim Acta A. 2011;79:1920–5.CrossRefGoogle Scholar
  14. 14.
    MacDowell JF. Aluminoborate glass-ceramics with low thermal expansivity. J Am Ceram Soc. 1990;73:2287–92.CrossRefGoogle Scholar
  15. 15.
    Calas G, Cormier L, Galoisy L, Jollivet P. Structure–property relationships in multicomponent oxide glasses. C R Chim. 2002;5:831–43.CrossRefGoogle Scholar
  16. 16.
    Galoisy L, Cormier L, Rossano S, Ramos A, Calas G, Gaskell P, Grand ML. Cationic ordering in oxide glasses: the example of transition elements. Miner Mag. 2000;64:409–24.CrossRefGoogle Scholar
  17. 17.
    Brow RK, Tallant DR. Structural design of sealing glasses. J Non Cryst Solids. 1997;222:396–406.CrossRefGoogle Scholar
  18. 18.
    Kaur G, Kumar V, Singh K, Pandey OP, Pickrell G. Correlation of glass stability (GS) and heating rates using inflection point temperature. Phys Chem Glasses. 2014;55(1):57–62.Google Scholar
  19. 19.
    Kaur B, Singh K, Pandey OP. Microstructural study of Crofer 22 APU-glass interface for SOFC application. Int J Hydrog Energy. 2012;37:3839–47.CrossRefGoogle Scholar
  20. 20.
    Baki MA, El-Daisty F, Wahab FAA. Optical characterization of xTiO2–(60 − x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity. Opt Commun. 2006;261:65–70.CrossRefGoogle Scholar
  21. 21.
    Sandhu AK, Singh S, Pandey OP. Neutron irradiation effects on optical and structural properties of silicate glasses. Mat Chem Phys. 2009;115:783–8.CrossRefGoogle Scholar
  22. 22.
    Shelby JE. Introduction to glass science and technology. 2nd ed. Cambridge: Royal Society of Chemistry; 2005.Google Scholar
  23. 23.
    Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D. Crystallisation kinetics in AO–Al2O3–SiO2–B2O3 glasses (A = Ba, Ca, Mg). J Mater Sci. 2000;35:3089–96.CrossRefGoogle Scholar
  24. 24.
    Imran MMA, Bhandari D, Saxena NS. Glass transition phenomena, crystallization kinetics and thermodynamic properties of ternary Se80Te20− xInx (x = 2, 4, 6, 8 and 10) semiconducting glasses: theoretical and experimental aspects. Mater Sci Eng A. 2000;292:56–65.CrossRefGoogle Scholar
  25. 25.
    Augis JA, Bennett JE. Calculation of avrami parameters for heterogenous solid state reaction using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.CrossRefGoogle Scholar
  26. 26.
    Sanditov DS, Damdinov DG. Fluctuation micro-hole volume, activation volume of viscous flow, and molar volume of alkali silicate glasses. Fiz Khim Stekla. 1980;6:300–5.Google Scholar
  27. 27.
    Frenkel YI. Kinetic theory of liquids. Moscow: Nauka; 1975.Google Scholar
  28. 28.
    Raghvan V. Materials science and engineering. 5th ed. PHI Learning Pvt. Ltd; 2008. p. 74.Google Scholar
  29. 29.
    Kaur G, Kumar V, Pandey OP, Singh K. Thermodynamic stability of yttrium alkaline earth borosilicate glasses and their compatibility with Crofer for SOFC. J Electrochem Soc. 2012;159:B277–84.CrossRefGoogle Scholar
  30. 30.
    Reddy RR, Ahammed YN, Gopal KR, Azeem PA, Rao TVR. Correlation between optical basicity, electronegativity and electronic polarizability for some oxides and oxysalts. Opt Mater. 1999;12:425–8.CrossRefGoogle Scholar
  31. 31.
    Duffy JA. Relationship between optical basicity and thermochemistry of silicates. J Phys Chem B. 2004;108:7641–5.CrossRefGoogle Scholar
  32. 32.
    Kamitsos EI, Yiannopoulous YD, Duffy JA. Optical basicity and refractivity of germanate glasses. J Phys Chem B. 2002;106:8988–93.CrossRefGoogle Scholar
  33. 33.
    Duffy JA. A review of optical basicity and its applications to oxidic systems. Geochim Cosmochim Acta. 1993;57:3961–70.CrossRefGoogle Scholar
  34. 34.
    Kaur G, Pandey OP, Singh K. Effect of modifiers field strength on optical, structural and mechanical properties of lanthanum borosilicate glasses. J Non Cryst Solids. 2012;358:2589–96.CrossRefGoogle Scholar
  35. 35.
    Duffy JA, Ingram MD. Optical basicity—IV: influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J Inorg Nucl Chem. 1975;37:1203–6.CrossRefGoogle Scholar
  36. 36.
    Furukawa T, White WB. Vibrational spectra and glass structure. J Non Cryst Solids. 1980;38:87–92.CrossRefGoogle Scholar
  37. 37.
    McMillan PF, Piriou B. The structures and vibrational spectra of crystals and glasses in the silica–alumina system. J Non Cryst Solids. 1982;53:279–98.CrossRefGoogle Scholar
  38. 38.
    Matson DW, Sharma SK, Philpotts JA. The structure of high-silica alkali–silicate glasses. A Raman spectroscopic investigation. J Non Cryst Solids. 1983;58:323–52.CrossRefGoogle Scholar
  39. 39.
    McMillan PF. Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Am Miner. 1984;69:622–44.Google Scholar
  40. 40.
    Engelhardt G, Zeigan D, Jancke H, Hoebbel D, Wieker W. 29Si-NMR spectroscopy of silicate solutions. II. On the dependence of the structure of silicate anions in water solutions from the Na:Si ratio. Z Anorg Allg Chem. 1975;418:17–28.CrossRefGoogle Scholar
  41. 41.
    Lucovsky G, Wong CK, Pollard WB. Vibrational properties of glasses: Intermediate range order. J Non Cryst Solids. 1983;59–60:839–46.CrossRefGoogle Scholar
  42. 42.
    Lucovsky G. Spectroscopic evidence for valence-alternation-pair defect states in vitreous SiO2. Philos Mag. 1979;39:513–30.CrossRefGoogle Scholar
  43. 43.
    Mott NF, Davis EA. Electronic processes in non-crystalline materials. Oxford: Clarendon; 1979. p. 287.Google Scholar
  44. 44.
    Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92:1324.CrossRefGoogle Scholar
  45. 45.
    Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. I. J Appl Phys. 1996;79:1736–40.CrossRefGoogle Scholar
  46. 46.
    Wemple SH, Domenico MD. Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B. 1971;3:1338–51.CrossRefGoogle Scholar
  47. 47.
    Baki MA, Wahab FAA, El-Daisty F. Optical characterization of xTiO2–(60 − x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties. Mater Chem Phys. 2006;96:201–10.CrossRefGoogle Scholar
  48. 48.
    Saddeek YB, Shaabaan ER, Moustafa ES, Moustafa HM. Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Phys B. 2008;403:2399–407.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • S. K. Arya
    • 1
  • Bhupinder Kaur
    • 2
  • Gurbinder Kaur
    • 2
  • K. Singh
    • 2
  1. 1.Department of Applied SciencesABES Institute of TechnologyGhaziabadIndia
  2. 2.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations