Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1273–1281 | Cite as

Host–guest interactions in poly(N-isopropylacrylamide) gel

A thermoanalytical approach
  • Enikő Manek
  • Attila Domján
  • Alfréd Menyhárd
  • Krisztina László
Article

Abstract

Responsive hydrogels are one of the most frequently proposed vehicles for targeted and controlled drug delivery. Interaction between the transported drug and the three-dimensional polymer network could compromise the kinetics and the efficiency of delivery in thermoresponsive polymers. Poly(N-isopropylacrylamide) (PNIPA) gel was equilibrated with excess 500 mM aqueous solutions of three model drug molecules, phenol, ibuprofen and dopamine. These molecules affect the swelling properties of PNIPA in different ways. After determining the drug uptake and drying to constant mass, the loaded samples were studied with simultaneous thermal analysis. The difference in thermal response is interpreted in terms of the different typical molecular interactions in these systems under confined conditions. For phenol and dopamine, the water–phenol and dopamine–dopamine interactions, respectively, are stronger than that between the guest and polymer. For ibuprofen–PNIPA, the synergy in the thermal decomposition may stem from a strong polymer–ibuprofen relation.

Keywords

Temperature-sensitive polymers Poly(N-isopropylacrylamide) gel Host–guest interactions Dopamine Ibuprofen Phenol 

Notes

Acknowledgements

Support from the National Science Research Fund OTKA K101861, PD109346 and FP7-PEOPLE-2010-IRSES-269267 (Marie Curie International Research Staff Exchange Scheme) project is acknowledged. A. D. acknowledges the support of the Bolyai Fellowship. E.M. acknowledges the support of the Ernő Pungor Scholarship.

References

  1. 1.
    Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2002;28:957–74.Google Scholar
  2. 2.
    Huanga G, Gaoa J, Hua Z, St. John JV, Ponder BC, Moro D. Controlled drug release from hydrogel nanoparticle networks. J Control Release. 2004;94:303–11.CrossRefGoogle Scholar
  3. 3.
    Biswas CS, Patel VK, Vishwakarma NK, Tiwari VK, Maiti B, Maiti P, Kamigaito M, Okamoto Y, Ray B. Effects of tacticity and molecular weight of poly(N-isopropylacrylamide) on its glass transition temperature. Macromolecules. 2011;44:5822–4.CrossRefGoogle Scholar
  4. 4.
    Sousa RG, Magalhaes WF, Freitas RFS. Glass transition and thermal stability of poly(N-isopropylacrylamide) gels and some of their copolymers with acrylamide. Polym Degrad Stabil. 1998;61:275–81.CrossRefGoogle Scholar
  5. 5.
    Kosik K, Wilk E, Geissler E, László K. Distribution of phenols in thermoresponsive hydrogels. Macromolecules. 2007;40(6):2141–7.CrossRefGoogle Scholar
  6. 6.
    László K, Kosik K, Wilk E, Geissler E. Interaction of phenolic pollutants with PNIPA. Surface Chemistry in Biomedical and Environmental Science: NATO ASI series, Springer; 2006. p. 393–402.Google Scholar
  7. 7.
    Kosik K, László K, Rochas C, Geissler E. Phase transition in poly(N-isopropylacrylamide) hydrogels induced by phenols. Macromolecules. 2003;36(20):7771–6.CrossRefGoogle Scholar
  8. 8.
    Domján A, Geissler E, László K. Phenol–polymer proximity in a thermoresponsive gel determined by solid-state 1H–1H CRAMPS NMR spectroscopy. Soft Matter. 2010;6:247–9.CrossRefGoogle Scholar
  9. 9.
    Domján A, Manek E, Geissler E, László K. Host-guest interactions in poly(N-isopropylacrylamide) hydrogel seen by one- and two-dimensional 1H CRAMPS solid-state NMR spectroscopy. Macromolecules. 2013;46:3118–24.CrossRefGoogle Scholar
  10. 10.
    László K, Manek E, Vavra S, Geissler E, Domján A. Host–guest interactions in poly(N-isopropylacrylamide) hydrogels. Chem Lett. 2012;41(10):1055–6.CrossRefGoogle Scholar
  11. 11.
    Kawashima T, Koga S, Annaka M, Sasaki S. Roles of hydrophobic interaction in a volume phase transition of alkylacrylamide gel induced by the hydrogen-bond-driving alkylphenol binding. J Phys Chem B. 2005;109:1055–62.CrossRefGoogle Scholar
  12. 12.
    Francis R, Baby DK, Kumar S. Poly(N-isopropylacrylamide) hydrogel: effect of hydrophilicity on controlled release of ibuprofen at different pH. J Appl Polym Sci. 2012;124:5079–88.CrossRefGoogle Scholar
  13. 13.
    Martín A, Scholle K, Mattea F, Meterc D, Cocero MJ. Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation. Cryst Growth Des. 2009;986:2504–11.CrossRefGoogle Scholar
  14. 14.
    Lowe TL, Tenhu H, Tylli H. Effect of hydrophobicity of a drug on its release from hydrogels with different topological structures. J Appl Polym Sci. 1999;73:1031–9.CrossRefGoogle Scholar
  15. 15.
    Jiang HL, Wang LQ. Ibuprofen induced drug loaded polymeric micelles. Chin Chem Lett. 2011;22:1123–6.CrossRefGoogle Scholar
  16. 16.
    Tan SW, Wang HJ, Tu KH, Zhou Z, Zhu S, Zhang D. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. J Mater Chem. 2007;17:2428–33.CrossRefGoogle Scholar
  17. 17.
    Wu Y, Dou Z, Liu Y, Lv G, Pu T, He X. Dopamine sensor development based on the modification of glassy carbon electrode with β-cyclodextrin-poly(N-isopropylacrylamide). RSC Adv. 2013;3:12726–34.CrossRefGoogle Scholar
  18. 18.
    Phenol. In: NIST Chemistry Webbook, Standard Reference Database Number 69, National Institute of Standards and Technology, Material Measurement Laboratory. http://webbook.nist.gov/cgi/cbook.cgi?ID=C108952&Mask=4#Thermo-Phase. Last visited 3 Sept 2014.
  19. 19.
  20. 20.
    Zhang GGZ, Paspal SYL, Suryanarayanan R, Grant DJW. Racemic species of sodium ibuprofen: characterization and polymorphic relationships. J Pharm Sci. 2003;92:1356–66.CrossRefGoogle Scholar
  21. 21.
    Lee T, Zhang CW. Dissolution enhancement by bio-inspired mesocrystals: the study of racemic (R, S)-(±)-sodium ibuprofen dihydrate. Pharm Res. 2008;25(7):1563–71.CrossRefGoogle Scholar
  22. 22.
    The Merck index - Encyclopedia of Chemicals, Drugs and Biologicals, 12th ed. Rahway, NJ: Merck Research Laboratories; 1996. p. 578.Google Scholar
  23. 23.
    Xiong S, Wang Y, Yu J, Chen L, Zhu J, Hu Z. Polydopamine particles for next-generation multifunctional biocomposites. J Mater Chem A. 2014;2:7578–87.CrossRefGoogle Scholar
  24. 24.
    Ito Y, Arimoto S. Exothermic thermal reaction of dopamine with 3,5-dinitrobenzoic acid. J Phys Org Chem. 2003;16:849–57.CrossRefGoogle Scholar
  25. 25.
    Shibayama M, Morimoto M, Nomura S. Phase separation induced mechanical transition of poly(N-isopropylacrylamide)/water isochore gels. Macromolecules. 1994;27(18):5060–6.CrossRefGoogle Scholar
  26. 26.
    László K, Kosik K, Geissler E. High-sensitivity isothermal and scanning microcalorimetry in PNIPA hydrogels around the volume phase transition. Macromolecules. 2004;37(26):10067–72.CrossRefGoogle Scholar
  27. 27.
    Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, Jiang Z. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. J Memb Sci. 2014;465:41–8.CrossRefGoogle Scholar
  28. 28.
    Tóth A, Novák C, László K. The effect of ionic environment on the TG response of phenol loaded PET-based porous carbons. J Therm Anal Calorim. 2009;97(1):273–80.CrossRefGoogle Scholar
  29. 29.
    Manek E, Domján A, Madarász J, László K. Interactions in aromatic probe molecule loaded poly(N-isopropylacrylamide) hydrogels and implications for drug delivery. Submitted to Eur Polym J.Google Scholar
  30. 30.
    Janovák L, Varga J, Kemény L, Dékány I. The effect of surface modification of layer silicates on the thermoanalytical properties of poly(NIPAAm-coAAm) based composite hydrogels. J Therm Anal Calorim. 2009;98(2):485–93.CrossRefGoogle Scholar
  31. 31.
    Coughlan DC, Corrigan OI. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006;313:163–74.CrossRefGoogle Scholar
  32. 32.
    Dhara D, Chatterji PR. Effect of hydrotropes on the volume phase transition in poly(N-isopropylacrylamide) hydrogel. Langmuir. 1999;15:930–5.CrossRefGoogle Scholar
  33. 33.
    Koga S, Sasaki S, Maeda H. Effect of hydrophobic substances on the volume-phase transition of N-isopropylacrylamide gels. J Phys Chem B. 2001;105:4105–10.CrossRefGoogle Scholar
  34. 34.
    Murase Y, Onda T, Tsujii K, Tanaka T. Interactions of a dye and a solvent with poly(N-isopropylacrylamide) gel in relation to its phase-transition behavior. Bull Chem Soc Jpn. 2000;73:2543.CrossRefGoogle Scholar
  35. 35.
    Orlov Y, Xu X, Maurer G. Swelling of nonionic N-isopropyl acrylamide hydrogels in aqueous solution of acetic acid or pyridine. Fluid Phase Equilib. 2005;238:87–94.CrossRefGoogle Scholar
  36. 36.
    Suzuki Y, Suzuki N, Takasu Y, Nishio I. A study on the structure of water in an aqueous solution by the solvent effect on a volume phase. J Chem Phys. 1997;15:5890.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Enikő Manek
    • 1
  • Attila Domján
    • 2
  • Alfréd Menyhárd
    • 1
  • Krisztina László
    • 1
  1. 1.Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsBudapestHungary
  2. 2.NMR Spectroscopy Laboratory, Institute of Organic Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations