Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1981–1993 | Cite as

Thermal degradation kinetics of two acrylic-based copolymers

  • J. López-Beceiro
  • A. Álvarez-García
  • S. Martins
  • B. Álvarez-García
  • S. Zaragoza-Fernández
  • J. Menéndez-Valdés
  • R. ArtiagaEmail author


Acrylic copolymers and acrylates are of high interest in a wide variety of applications including coatings. This interest is increasing due to the possibility of being obtained by environmentally friendly procedures. In this research, the thermal stability in non-oxidizing atmosphere of two copolymers, a styrene/butyl acrylate and a diacetone acrylamide/butyl acrylate, is investigated by thermogravimetry (TG). A model consisting of a mixture of generalized logistic functions, which was used to fit calorimetric curves, was adapted to isothermal and non-isothermal contexts. The model was already applied to different materials and processes, being this time the first one that it is applied to TG degradation studies. In the current form, making use of multiple linear heating rates and isothermal experiments at several temperatures, the model allows for obtaining the true energy barrier and other kinetic parameters. The degradations of these copolymers were successfully fitted by the proposed model, and the main overlapping process was separately studied. The kinetic parameter values obtained from both compounds are compared to each other and to those reported from other cases where the model was applied. An important parameter is the critical temperature, which represents the minimum temperature for a given degradation processes to occur. Values of 495 and 525 K were obtained, respectively, for S/BA and BA/DAAM. True energy barrier values obtained for the degradation of these two polymers are approximately a half of those obtained in polymer crystallizations from the melt, and five times of those obtained in the case of an epoxy curing. The accelerating effect of applying a heating ramp is similar to that observed for polymer crystallization and smaller than that observed in thermoset curing.


Butyl acrylate Diacetone acrylamide Styrene Copolymer TG Degradation Kinetics 



The authors acknowledge the Spanish Ministerio de Ciencia e Innovación for the provision of funds MTM2011-22392.


  1. 1.
    Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim. 2012;109:1163–7. doi: 10.1007/s10973-011-2133-1.CrossRefGoogle Scholar
  2. 2.
    Artiaga R, Cao R, Naya S, González-Martín B, Mier J, García A. Separation of overlapping processes from TGA data and verification by EGA. J ASTM Int. 2005;2:12795. doi: 10.1520/JAI12795.CrossRefGoogle Scholar
  3. 3.
    Tarrío-Saavedra J, Naya S, Francisco-Fernández M, Artiaga R, Lopez-Beceiro J. Application of functional ANOVA to the study of thermal stability of micro–nano silica epoxy composites. Chemom Intell Lab Syst. 2011;105:114–24. doi: 10.1016/j.chemolab.2010.11.006.CrossRefGoogle Scholar
  4. 4.
    Brown ME. Introduction to thermal analysis: techniques and applications. Dordrecht: Kluwer; 2001.Google Scholar
  5. 5.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28. doi: 10.1021/jp062746a.CrossRefGoogle Scholar
  6. 6.
    Prime RB, Michalski C, Neag CM. Kinetic analysis of a fast reacting thermoset system. Thermochim Acta. 2005;429:213–7. doi: 10.1016/j.tca.2004.11.029.CrossRefGoogle Scholar
  7. 7.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82. doi: 10.1021/jp0022205.CrossRefGoogle Scholar
  8. 8.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76. doi: 10.1021/jp103171h.CrossRefGoogle Scholar
  9. 9.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43. doi: 10.1016/S0040-6031(00)00443-3.CrossRefGoogle Scholar
  10. 10.
    Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal kinetic studies. Thermochim Acta. 2005;429:93–102. doi: 10.1016/j.tca.2004.11.030.CrossRefGoogle Scholar
  11. 11.
    Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12. doi: 10.1016/j.tca.2005.05.015.CrossRefGoogle Scholar
  12. 12.
    Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, et al. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7. doi: 10.1007/s10973-013-3160-x.CrossRefGoogle Scholar
  13. 13.
    López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co(HCOO)3[(CH3)2NH2]. J Phys Chem C. 2012;116:1219–24. doi: 10.1021/jp208070d.CrossRefGoogle Scholar
  14. 14.
    Koukiotis CG, Karabela MM, Sideridou ID. Mechanical properties of films of latexes based on copolymers BA/MMA/DAAM and BA/MMA/VEOVA-10/DAAM and the corresponding self-crosslinked copolymers using the adipic acid dihydrazide as crosslinking agent. Prog Org Coat. 2012;75:106–15.CrossRefGoogle Scholar
  15. 15.
    Tale NV, Jagtap RN. Synthesis of diacetone acrylamide monomer and the film properties of its copolymers. Iran Polym J. 2010;19:801–10.Google Scholar
  16. 16.
    Schuler B, Baumstark R, Kirsch S, Pfau A, Sandor M, Zosel A. Structure and properties of multiphase particles and their impact on the performance of architectural coatings. Prog Org Coat. 2000;40:139–50.CrossRefGoogle Scholar
  17. 17.
    Sajjadi S, Yianneskis M. Analysis of particle formation under monomer-starved conditions in emulsion polymerization reactors. Macromol Symp. 2004;206:201–14. doi: 10.1002/masy.200450216.CrossRefGoogle Scholar
  18. 18.
    Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85:667–74. doi: 10.1016/j.polymdegradstab.2004.03.006.CrossRefGoogle Scholar
  19. 19.
    Artiaga R, López-Beceiro J, Tarrío-Saavedra J, Gracia-Fernández C, Naya S, Mier JL. Estimating the reversing and non-reversing heat flow from standard DSC curves in the glass transition region. J Chemom. 2011;25:287–94. doi: 10.1002/cem.1347.CrossRefGoogle Scholar
  20. 20.
    López-Beceiro J, Gracia-Fernández C, Artiaga R. A kinetic model that fits nicely isothermal and non-isothermal bulk crystallizations of polymers from the melt. Eur Polym J. 2013;49:2233–46. doi: 10.1016/j.eurpolymj.2013.04.026.CrossRefGoogle Scholar
  21. 21.
    López-Beceiro J, Fontenot SA, Gracia-Fernández C, Artiaga R, Chartoff R. A logistic kinetic model for isothermal and nonisothermal cure reactions of thermosetting polymers. J Appl Polym Sci. 2014;131:n/a–n/a. doi: 10.1002/app.40670.
  22. 22.
    Artiaga R, Naya S, Cao R, Barbadillo F, Fuentes A. Application of mixture models to the study of polymer degradation by TGA. New York: Nova Science Publishers; 2007.Google Scholar
  23. 23.
    Naya S, Cao R, de Ullibarri IL, Artiaga R, Barbadillo F, García A. Logistic mixture model versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20:158–63.CrossRefGoogle Scholar
  24. 24.
    Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Crystallogr. 2010;43:1126–8. doi: 10.1107/S0021889810030499.CrossRefGoogle Scholar
  25. 25.
    Vannice MA. Kinetics of catalytic reactions. New York: Springer; 2005.CrossRefGoogle Scholar
  26. 26.
    MacCallum JR, Tanner J. The kinetics of thermogravimetry. Eur Polym J. 1970;6:1033–9. doi: 10.1016/0014-3057(70)90035-2.CrossRefGoogle Scholar
  27. 27.
    Leskovac M, Kovacevic V, Fles D, Hace D. Thermal stability of poly(methyl methacrylate-co-butyl acrylate) and poly(styrene-co-butyl acrylate) polymers. Polym Eng Sci. 1999;39:600–8. doi: 10.1002/pen.11449.CrossRefGoogle Scholar
  28. 28.
    Tarrío-Saavedra J, López-Beceiro J, Naya S, Francisco-Fernández M, Artiaga R. Simulation study for generalized logistic function in thermal data modeling. J Therm Anal Calorim. 2014;118:1253–68. doi: 10.1007/s10973-014-3887-z.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • J. López-Beceiro
    • 1
  • A. Álvarez-García
    • 1
  • S. Martins
    • 2
  • B. Álvarez-García
    • 1
  • S. Zaragoza-Fernández
    • 1
  • J. Menéndez-Valdés
    • 3
  • R. Artiaga
    • 1
    Email author
  1. 1.University of A CoruñaFerrolSpain
  2. 2.R&D Stahl Brasil SAPortãoBrazil
  3. 3.R&D Stahl ChinaBeijingChina

Personalised recommendations