Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1905–1912 | Cite as

Hybrids of Mg–Al-layered double hydroxide and multiwalled carbon nanotube as a reinforcing filler in the l-phenylalanine-based polymer nanocomposites

  • Shadpour Mallakpour
  • Mohammad Dinari
Article

Abstract

In this study, hybrid nanofiller based on acid functionalized multiwalled carbon nanotube (CNT) and Mg–Al-layered double hydroxide (LDH) was used as reinforcing agent in the preparation of the amino acid containing polymer nanocomposites. LDH–CNT nanofillers were prepared in aqueous solution by ultrasonic irradiation in one-step. An optically active poly(amide-imide) (PAI) was prepared under green condition using molten tetra-n-butylammonium bromide. PAI/LDH–CNT nanocomposites containing 2, 4, and 8 mass% of LDH–CNT were prepared by ultrasonic method, and the structure and morphology of the obtained hybrid compounds were characterized by different techniques. The homogeneous dispersion of nanofillers in the PAI matrix was observed by field emission scanning electron microscopy and transmission electron microscopy. The obtained results revealed a coexistence of exfoliated and intercalated modified LDH–CNT in polymer matrix. Strong combination of the above nanofillers with the PAI matrix provided an efficient thermal improvement for the resulted nanocomposites.

Keywords

Layered double hydroxide (LDH) Multiwalled carbon nanotube Ultrasonic irradiation Chiral poly(amide-imide)s Thermogravimetric analysis 

Notes

Acknowledgements

The partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan is gratefully acknowledged. Also, thankfully acknowledged of Iran Nanotechnology Initiative Council (INIC), and National Elite Foundation (NEF) for partial support.

References

  1. 1.
    Rives V. Layered double hydroxides: present and future. New York: Nova Science Publishers; 2001.Google Scholar
  2. 2.
    Braterman PS, Xu ZP, Yarberry F. Layered double hydroxides (LDHs). In: Auerbach SM, Carrado KA, Dutta PK, editors. Handbook of layered materials. Boca Raton: CRC Press; 2004. p. 373–4.Google Scholar
  3. 3.
    Yang QZ, Sun DJ, Zhang CG, Wang XJ, Zhao WA. Synthesis and characterization of polyoxyethylene sulfate intercalated mg–al–nitrate layered double hydroxide. Langmuir. 2003;19:5570–4.CrossRefGoogle Scholar
  4. 4.
    Liu C, Hou W, Li L, Li Y, Liu S. Synthesis and characterization of 5-fluorocytosine intercalated Zn–Al layered double hydroxide. J Solid State Chem. 2008;181:1792–7.CrossRefGoogle Scholar
  5. 5.
    Seftel EM, Cool P, Lutic D. Mg–Al and Zn–Fe layered double hydroxides used for organic species storage and controlled release. Mater Sci Eng C. 2013;33:5071–8.CrossRefGoogle Scholar
  6. 6.
    Debecker DP, Gaigneaux EM, Busca G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem Eur J. 2009;15:3920–35.CrossRefGoogle Scholar
  7. 7.
    Du L, Qu B. Structural characterization and thermal oxidation properties of LDPE/MgAl-LDH nanocomposites. J Mater Chem. 2006;16:1549–54.CrossRefGoogle Scholar
  8. 8.
    Wei M, Pu M, Guo J, Han J, Li F, He J, Evans DG, Duan X. Intercalation of L-Dopa into layered double hydroxides: enhancement of both chemical and stereochemical stabilities of a drug through host-guest interactions. Chem Mater. 2008;20:5169–80.CrossRefGoogle Scholar
  9. 9.
    Hetterley RD, Mackey R, Jones JTA, Khimyak YZ, Fogg AM, Kozhevnikov IV. One-step conversion of acetone to methyl isobutyl ketone over Pd-mixed oxidecatalysts prepared from novel layered double hydroxides. J Catal. 2008;258:250–5.CrossRefGoogle Scholar
  10. 10.
    Oliver SRJ. Cationic inorganic materials for anionic pollutant trapping and catalysis. Chem Soc Rev. 2009;38:1868–81.CrossRefGoogle Scholar
  11. 11.
    Gunawan P, Xu R. Direct assembly of anisotropic layered double hydroxide (LDH) nanocrystals on spherical template for fabrication of drug–LDH hollow nanospheres. Chem Mater. 2009;21:781–3.CrossRefGoogle Scholar
  12. 12.
    Kong X, Jin L, Wei M, Duan X. drugs intercalated into layered double hydroxide: structure and in vitro release. Appl Clay Sci. 2010;49:324–9.CrossRefGoogle Scholar
  13. 13.
    Chen L, Sun B, Wang X, Qiao F, Ai S. 2D ultrathin nanosheets of Co–Al layered double hydroxides prepared in l-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B. 2013;1:2268–74.CrossRefGoogle Scholar
  14. 14.
    Moreyon JE, De Roy A, Forano C, Besse JP. Realization of humidity sensors based on screen-printed anionic clay. Appl Clay Sci. 1995;10:163–75.CrossRefGoogle Scholar
  15. 15.
    Brichka SY, Prikhod’ko GP, Brichka AV, Kislii YA. Synthesis of bimodified carbon nanotubes-a nanocomposite material. Inorg Mater. 2004;40:1276–9.CrossRefGoogle Scholar
  16. 16.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci. 2010;35:837–67.CrossRefGoogle Scholar
  17. 17.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed. 2010;49:2114–38.CrossRefGoogle Scholar
  18. 18.
    Yu F, Deng H, Zhang Q, Wang K, Zhang C, Chen F, Fu Q. Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer. 2013;54:6425–36.CrossRefGoogle Scholar
  19. 19.
    Mun SC, Kim M, Prakashan K, Jung HJ, Son Y, Park OO. A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices. Carbon. 2014;67:64–71.CrossRefGoogle Scholar
  20. 20.
    Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 2003;3:597–602.CrossRefGoogle Scholar
  21. 21.
    Al-Hawarin J, Ayesh AS, Yasin E. Enhanced physical properties of poly(vinyl alcohol)-based single-walled carbon nanotube nanocomposites through ozone treatment of single-walled carbon nanotubes. J. Reinf Plast Compos. 2013;32:1295–301.CrossRefGoogle Scholar
  22. 22.
    Barrau S, Demont P, Perez E. Effect of palmitic acid on the electrical conductivity of carbon nanotubesepoxy resin composites. Macromolecules. 2003;36:9678–80.CrossRefGoogle Scholar
  23. 23.
    Chang CM, Liu YL. Functionalization of multiwalled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon. 2010;48:1289–97.CrossRefGoogle Scholar
  24. 24.
    Daugaard AE, Jankova K, Bqgelund J. Novel UV initiator for functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization applied on two different grades of nanotubes. J Polym Sci, Part A: Polym Chem. 2010;48:4594–601.CrossRefGoogle Scholar
  25. 25.
    Zhao MQ, Zhang Q, Huang JQ, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double—properties, synthesis, and applications. Adv Funct Mater. 2012;22:675–94.CrossRefGoogle Scholar
  26. 26.
    Du B, Fang Z. The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology. 2010;21:315603–8.CrossRefGoogle Scholar
  27. 27.
    Wang H, Xiang X, Li F. Facile synthesis and novel electrocatalytic performance of nanostructured Ni–Al layered double hydroxide/carbon nanotube composites. J Mater Chem. 2010;20:3944–52.CrossRefGoogle Scholar
  28. 28.
    Yang B, Yang Z, Wang R, Wang T. Layered double hydroxide/carbon nanotubes composite as a highperformance anode material for Ni–Zn secondary batteries. Electrochim Acta. 2013;111:581–7.CrossRefGoogle Scholar
  29. 29.
    Pradhan B, Srivastava SK. Layered double hydroxide/multiwalled carbon nanotube hybrids as reinforcing filler in silicone rubber. Compos A. 2014;56:290–9.CrossRefGoogle Scholar
  30. 30.
    Huang S, Peng H, Tjiu WW, Yang Z, Zhu H, Tang T, Liu T. Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbonnanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. J. Phys. Chem. B. 2010;114:16766–72.CrossRefGoogle Scholar
  31. 31.
    Mallakpour S, Dinari M. The effects of reactive organoclay on the thermal, mechanical, and microstructural properties of polymer/layered silicate nanocomposites based on chiral poly(amide-imide)s. J Therm Anal Calorim. 2013;114:329–37.CrossRefGoogle Scholar
  32. 32.
    Mallakpour S, Dinari M. Progress in synthetic polymers based on natural amino acids. J. Macromol. Sci. Part A Polym. Chem. 2011;48:644–79.CrossRefGoogle Scholar
  33. 33.
    Mallakpour S, Dinari M. Insertion of novel optically active poly(amide-imide) chains containing pyromellitoyl-bis-l-phenylalanine linkages into the nanolayered silicates modified with l-tyrosine through solution intercalation. Polymer. 2011;52:2514–23.CrossRefGoogle Scholar
  34. 34.
    Okada M. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 2002;27:87–133.CrossRefGoogle Scholar
  35. 35.
    Mallakpour S, Dinari M. Novel nanostructure amino acid-based poly(amide–imide)s enclosing benzimidazole pendant group in green medium: fabrication and characterization. Amino Acids. 2012;43:1605–13.CrossRefGoogle Scholar
  36. 36.
    Mallakpour S, Dinari M, Behranvand V. Ultrasonic-assisted synthesis and characterization of layered double hydroxides intercalated with bioactive N, N-(pyromellitoyl)-bis-L-a-amino acids. RSC Adv. 2013;3:23303–8.CrossRefGoogle Scholar
  37. 37.
    Liu Z, Ma R, Osada M, Lyi N, Ebina Y, Takada K, Sasaki T. Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006;128:4872–80.Google Scholar
  38. 38.
    Guo S, Zhang C, Peng H, Wang W, Liu T. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Compos. Sci. Technol. 2011;71:791–6.CrossRefGoogle Scholar
  39. 39.
    Sun Z, Liu Z, Han B, Wang Y, Du J, Xie Z, Han G. Fabrication of ruthenium–carbon nanotube nanocomposites in supercritical water. Adv Mater. 2005;17:928–32.CrossRefGoogle Scholar
  40. 40.
    Yang J, Yu C, Fan X, Ling Z, Qiu J, Gogotsi Y. Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J. Mater. Chem. A. 2013;1:1963–8.CrossRefGoogle Scholar
  41. 41.
    Yu C, Yang J, Zhao C, Fan X, Wang G, Qiu J. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale. 2014;6:3097–104.CrossRefGoogle Scholar
  42. 42.
    Frunza M, Lisa G, Popa MI, Miron ND, Nistor DI. Thermogravimetric analysis of layered double hydroxides with chloramphenicol and salicylate in the interlayer space. J Therm Anal Calorim. 2008;93:373–9.CrossRefGoogle Scholar
  43. 43.
    Theiss FL, Palmer SJ, Ayoko GA, Frost RL. Sulfate intercalated layered double hydroxides prepared by the reformation effect. J Therm Anal Calorim. 2012;107:1123–8.CrossRefGoogle Scholar
  44. 44.
    Frost RL, Palmer SJ, Spratt HJ. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95(1):123–9.CrossRefGoogle Scholar
  45. 45.
    Garcia-Gallastegui A, Iruretagoyena D, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Abdulrahman O, Alyoubi, David C, Milo SPS. Layered double hydroxides supported on multi-walled carbon nanotubes: preparation and CO2 adsorption characteristics. J Mater Chem. 2012;22:13932–40.CrossRefGoogle Scholar
  46. 46.
    Mallakpour S, Dinari M, Behranvand V. Anionic clay intercalated by multi-walled carbon nanotubes as an efficient 3D nanofiller for the preparation of high-performance l-alanine amino acid containing poly(amide-imide) nanocomposites. J Mater Sci. 2014;49:7004–13.CrossRefGoogle Scholar
  47. 47.
    Van Krevelen DW. Some basic aspects of flame resistance of polymeric materials. Polymer. 1975;16:615–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  3. 3.Department of Chemistry, Center of Excellence in Sensors and Green ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations