Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 1, pp 45–51 | Cite as

Applications of sample-controlled thermal analysis (SCTA) to kinetic analysis and synthesis of materials

  • L. A. Pérez-Maqueda
  • J. M. Criado
  • P. E. Sánchez-Jiménez
  • M. J. Diánez


The advantages of the sample-controlled thermal analysis (SCTA) for both the kinetic analysis of solid-state reactions and the synthesis of materials are reviewed. This method implies an intelligent control of the temperature by the solid-state reaction under study in such a way that the reaction rate as a function of the time fits a profile previously defined by the user. It has been shown that SCTA has important advantages for discriminating the kinetic model of solid-state reactions as compared with conventional rising temperature methods. Moreover, the advantages of SCTA methods for synthesising materials with controlled texture and structure are analysed.


CRTA SCTA Kinetics Synthesis of materials 


  1. 1.
    Ganteaume M, Rouquerol J. Etude cinetique d’une decomposition thermique per couplage de la calorimetrie et de l’analyse thermique. J Therm Anal. 1971;3:413–20.CrossRefGoogle Scholar
  2. 2.
    Rouquerol J. Methode d’analyse thermique sous faible pression et a vitesse de decomposition constante. Bull Soc Chim Fr. 1964: 31–32.Google Scholar
  3. 3.
    Paulik J, Paulik F. Quasi-isothermal thermogravimetry. Anal Chim Acta. 1971;56:328–31.CrossRefGoogle Scholar
  4. 4.
    Simon J. Novel multiple methods and results in thermal analysis. J Therm Anal. 1976;10:451–60.CrossRefGoogle Scholar
  5. 5.
    Rouquerol J, Rouquerol F, Ganteaume M. Thermal decomposition of gibsite under low pressure.I. Formation of boehmitic phase. J Catal. 1975;36:99–110.CrossRefGoogle Scholar
  6. 6.
    Rouquerol J, Rouquerol F, Ganteaume M. Thermal decomposition of gibsite under low pressure.2. Formation of microporous alumina. J Catal. 1979;57:222–30.CrossRefGoogle Scholar
  7. 7.
    PaulikF Paulik J, Naumann R, Kohnke K, Petzold D. Mechanism and kinetics of the dehydration of hydrargillites. Part I. Thermochim Acta. 1983;64:1–14.CrossRefGoogle Scholar
  8. 8.
    Dufau N, Luciani L, RouquerolF, Llewellyn P. Use of sample controlled thermal analysis to liberate the micropores of aluminophosphate AlPO4-11: evidence of template evaporation. J Mater Chem. 2001;11:1300–4.CrossRefGoogle Scholar
  9. 9.
    Sicard L, Llewellyn PL, Patarin J, Kolenda F. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecyl sulfate. Microporous Mesoporous Mater. 2001;44:195–201.CrossRefGoogle Scholar
  10. 10.
    Keene MTJ, Gougeon RDM, Denoyel R, Harris RK, Rouquerol J, Llewellyn P. Calcination of the MCM-41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity. J Mater Chem. 1999;9:2843–50.CrossRefGoogle Scholar
  11. 11.
    Rouquerol F, Rouquerol J, Thevand G, Triaca M. Desorption of chemisorbed species: its study by Controlled Rate Thermal Analysis. Surf Sci. 1985;162:239–44.CrossRefGoogle Scholar
  12. 12.
    Torralvo MJ, Grillet Y, Rouquerol F, Rouquerol J. Application of CRTA to the study of microporosity by thermodesorption of preadsorbed water. J Therm Anal. 1994;41:1529–34.CrossRefGoogle Scholar
  13. 13.
    Barnes PA, Parkes GMB, Brown DR, Charsley EL. Applications of new high resolution evolved gas analysis systems for the characterisation of catalysts using rate-controlled thermal analysis. Thermochim Acta. 1995;269:665–76.CrossRefGoogle Scholar
  14. 14.
    Dawson EA, Parkes GMB, Barnes PA, Chinn MJ, Norman PR. A study of the activation of carbon using sample controlled thermal analysis. J Therm Anal Calorim. 1999;56:267–73.CrossRefGoogle Scholar
  15. 15.
    Charsley EL, Rooney JJ, Hill JO, Parkes GMB, Barnes PA, Dawson EA. Development and applications of a preparative scale sample controlled thermogravimetric system. J Therm Anal Calorim. 2003;72:1091–2.CrossRefGoogle Scholar
  16. 16.
    Fesenko EA, Barnes PA, Parkes GMB, Dawson EA, Tiernan MJ. Catalyst characterisation and preparation using sample controlled thermal techniques–high resolution studies and the determination of the energetics of surface and bulk processes. Top Catal. 2002;19(3–4):283–301.CrossRefGoogle Scholar
  17. 17.
    Dawson EA, Parkes GMB, Barnes PA, Chinn MJ. An investigation of the porosity of carbons prepared by constant rate activation in air. Carbon. 2003;41(3):571–8.CrossRefGoogle Scholar
  18. 18.
    Chopra GS, Real C, Alcala MD, Perez-Maqueda LA, Subrt J, Criado JM. Factors influencing the texture and stability of maghemite obtained from the thermal decomposition of lepidocrocite. Chem Mater. 1999;11(4):1128–37.CrossRefGoogle Scholar
  19. 19.
    Perez-Maqueda LA, Criado JM, Real C, Subrt J, Bohacek J. The use of constant rate thermal analysis (CRTA) for controlling the texture of hematite obtained from the thermal decomposition of goethite. J Mater Chem. 1999;9:1839–46.CrossRefGoogle Scholar
  20. 20.
    Perez-Maqueda LA, Criado JM, Subrt J, Real C. Synthesis of acicular hematite catalysts with tailored porosity. Catal Lett. 1999;60(3):151–6.CrossRefGoogle Scholar
  21. 21.
    Perez-Maqueda LA, Sanchez-Jimenez PE, Criado JM. Sample controlled temperature (SCT): a new method for the synthesis and characterization of catalysts. Curr Top Catal. 2007;6:1–17.Google Scholar
  22. 22.
    Fesenko EA, Barnes PA, Parkes GMB. SCTA and catalysis. In: Sörensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple form and future. Dordrecht: Kluwer Academic; 2003. p. 174–225.CrossRefGoogle Scholar
  23. 23.
    Llewellyn P, Rouquerol F, Rouquerol J. SCTA and adsorbents. In: Sörensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple form and future. Dordrecht: Kluwer Academic; 2003. p. 135–73.CrossRefGoogle Scholar
  24. 24.
    Alcala MD, Criado JM, Gotor FJ, Real C. Beta-sialon obtained from carbothermal reduction of kaolinite employing sample controlled reaction temperature (SCRT). J Mater Sci. 2006;41:1933–8.CrossRefGoogle Scholar
  25. 25.
    Alcala MD, Criado JM, Real C. Sample controlled reaction temperature (SCRT): controlling the phase composition of silicon nitride obtained by carbothermal reduction. Adv Eng Mater. 2002;4:478–82.CrossRefGoogle Scholar
  26. 26.
    Alcala MD, Gotor FJ, Perez-Maqueda LA, Real C, Dianez MJ, Criado JM. Constant rate thermal analysis (CRTA) as a tool for the synthesis of materials with controlled texture and structure. J Therm Anal Calorim. 1999;56:1447–52.CrossRefGoogle Scholar
  27. 27.
    Real C, Alcala D, Criado JM. Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method. Solid State Ion. 1997;95:29–32.CrossRefGoogle Scholar
  28. 28.
    Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide? Solid State Ion. 2003;157:163–9.CrossRefGoogle Scholar
  29. 29.
    Criado JM, Gotor FJ, Real C, Jimenez F, Ramos S, Delcerro J. Application of the constant rate thermal-analysis technique to the microstructure control of BaTiO3 yielded from coprecipitated oxalate. Ferroelectrics. 1991;115:43–8.CrossRefGoogle Scholar
  30. 30.
    Gotor FJ, Perez-Maqueda LA, Criado JM. Synthesis of BaTiO3 by applying the sample controlled reaction temperature (SCRT) method to the thermal decomposition of barium titanyl oxalate. J Eur Ceram Soc. 2003;23:505–13.CrossRefGoogle Scholar
  31. 31.
    Perez-Maqueda LA, Dianez MJ, Gotor FJ, Sayagues MJ, Real C, Criado JM. Synthesis of needle-like BaTiO3 particles from the thermal decomposition of a citrate precursor under sample controlled reaction temperature conditions. J Mater Chem. 2003;13:2234–41.CrossRefGoogle Scholar
  32. 32.
    Arii T, Terayama K, Fujii N. Controlled-rate thermal analysis–study of the process of super hard material debinding. J Therm Anal. 1996;47:1649–61.CrossRefGoogle Scholar
  33. 33.
    Dwivedi A, Speyer RF. Rate-controlled organic burnout of multilayer green ceramics. Thermochim Acta. 1994;247:431–8.CrossRefGoogle Scholar
  34. 34.
    Nishimoto MY, Speyer RF, Hackenberger WS. Thermal processing of multilayer PLZT actuators. J Mater Sci. 2001;36:2271–6.CrossRefGoogle Scholar
  35. 35.
    Paulik J, Paulik F. Simultaneous thermoanalytical examinations by means of derivatograph. Wilson´s, comprehensive analytical chemistry, vol. XII. Amsterdam: Elsevier; 1981.Google Scholar
  36. 36.
    Paulik F. Special trends in thermal analysis. New York: Wiley; 1995.Google Scholar
  37. 37.
    Parkes GMB, Barnes PA, Charsley EL. New concepts in sample controlled thermal analysis: resolution in the time and temperature domains. Anal Chem. 1999;71:2482–7.CrossRefGoogle Scholar
  38. 38.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM. Quantitative characterization of multicomponent polymers by sample-controlled thermal analysis. Anal Chem. 2010;82:8875–80.CrossRefGoogle Scholar
  39. 39.
    Arii T, Kishi A. The effect of humidity on thermal process of zinc acetate. Thermochim Acta. 2003;400:175–85.CrossRefGoogle Scholar
  40. 40.
    Bordere S, Floreancig A, Rouquerol F, Rouquerol J. Obtaining a divided uranium oxide from the thermolysis of UO2(NO3)2.6H2O–outstanding role of the residual pressure. Solid State Ion. 1993;63:229–35.CrossRefGoogle Scholar
  41. 41.
    Bordere S, Rouquerol F, Llewellyn PL, Rouquerol J. Unexpected effect of pressure on the dehydration kinetics of uranyl nitrate trihydrate: an example of a smith-topley effect. Thermochim Acta. 1996;283:1–11.CrossRefGoogle Scholar
  42. 42.
    Criado JM, Perez-Maqueda LA, Gotor FJ, Malek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72:901–6.CrossRefGoogle Scholar
  43. 43.
    Koga N, Criado JM, Tanaka H. Kinetic analysis of the thermal decomposition of synthetic malachite by CRTA. J Therm Anal Calorim. 2000;60:943–54.CrossRefGoogle Scholar
  44. 44.
    Koga N, Criado JM, Tanaka H. A kinetic aspect of the thermal dehydration of dilithium tetraborate trihydrate. J Therm Anal Calorim. 2002;67:153–61.CrossRefGoogle Scholar
  45. 45.
    Laureiro Y, Jerez A, Rouquerol F, Rouquerol J. Dehydration kinetics of wyoming montmorillonite studied by controlled transformation rate thermal analysis. Thermochim Acta. 1996;278:165–73.CrossRefGoogle Scholar
  46. 46.
    Ortega A, Roldan MA, Real C. Carbothermal synthesis of vanadium nitride: kinetics and mechanism. Int J Chem Kinet. 2006;38:369–75.CrossRefGoogle Scholar
  47. 47.
    Parkes GMB, Barnes PA, Charsley EL, Reading M, Abrahams I. Real-time analysis of peak shape: a theoretical approach to sample controlled thermal analysis. Thermochim Acta. 2000;354:39–43.CrossRefGoogle Scholar
  48. 48.
    Tatsuoka T, Koga N. Effect of atmospheric water vapor on the thermally induced crystallization in zirconia gel. J Am Ceram Soc. 2012;95:557–64.CrossRefGoogle Scholar
  49. 49.
    Tiernan MJ, Barnes PA, Parkes GMB. Use of solid insertion probe mass spectrometry and constant rate thermal analysis in the study of materials: determination of apparent activation energies and mechanisms of solid-state decomposition reactions. J Phys Chem B. 1999;103:6944–9.CrossRefGoogle Scholar
  50. 50.
    Tiernan MJ, Barnes PA, Parkes GMB. New approach to the investigation of mechanisms and apparent activation energies for the reduction of metal oxides using constant reaction rate temperature-programmed reduction. J Phys Chem B. 1999;103:338–45.CrossRefGoogle Scholar
  51. 51.
    Yamada S, Tsukumo E, Koga N. Influences of evolved gases on the thermal decomposition of zinc carbonate hydroxide evaluated by controlled rate evolved gas analysis coupled with TG. J Therm Anal Calorim. 2009;95:489–93.CrossRefGoogle Scholar
  52. 52.
    Criado JM, Perez-Maqueda LA. Sample controlled thermal analysis and kinetics. J Therm Anal Calorim. 2005;80:27–33.CrossRefGoogle Scholar
  53. 53.
    Sanchez-Jimenez PE, Criado JM, Perez-Maqueda LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 2008;94:427–32.CrossRefGoogle Scholar
  54. 54.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab. 2009;94:2079–85.CrossRefGoogle Scholar
  55. 55.
    Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51:3998–4007.CrossRefGoogle Scholar
  56. 56.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95:733–9.CrossRefGoogle Scholar
  57. 57.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76.CrossRefGoogle Scholar
  58. 58.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Constant rate thermal analysis for thermal stability studies of polymers. Polym Degrad Stab. 2011;96:974–81.CrossRefGoogle Scholar
  59. 59.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C. 2012;116:11797–807.CrossRefGoogle Scholar
  60. 60.
    Criado JM, Perez-Maqueda LA. SCTA and kinetics. In: Sörensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple form and future. Dordrecht: Kluwer Academic; 2003. p. 62–101.CrossRefGoogle Scholar
  61. 61.
    Criado JM. Kinetic-analysis of thermoanalytical diagrams obtained with the quasi-isothermal heating technique. Thermochim Acta. 1979;28:307–12.CrossRefGoogle Scholar
  62. 62.
    Criado JM, Ortega A, Gotor F. Correlation between the shape of controlled-rate thermal-analysis curves and the kinetics of solid-state reactions. Thermochim Acta. 1990;157:171–9.CrossRefGoogle Scholar
  63. 63.
    Reading M. Controlled rate thermal analysis and beyond. In: Charsley EL, Warrington SB, editors. Thermal analysis techniques and applications. Cambridge: Royal Society of Chemistry; 1992. p. 126–55.Google Scholar
  64. 64.
    Reading M. “Controlled Rate Thermal Analysis and Related Techniques”. In “Handbook of Thermal Analysis and Calorimetry” (Gallagher PK, General Ed.). Vol 1: “Principles and Practice” (M.E. Brown, Ed. Vol. 1), Elsevier, Amsterdam 1998, vol. 1, p. 423–443.Google Scholar
  65. 65.
    Criado JM, Rouquerol F, Rouquerol J. Thermal decomposition reactions in solids–comparison of the constant decomposition rate thermal analysis with the conventional TG method. Thermochim Acta. 1980;38:109–15.CrossRefGoogle Scholar
  66. 66.
    Criado JM. Study of the thermal decomposition of double strontium and barium carbonates using a new technique: constant rate thermal analysis (CRTA). Mater Sci Monogr. 1980;6:1096–105.Google Scholar
  67. 67.
    Criado JM. Determination of the mechanism of thermal decomposition of MnCO3, CdCO3 and PbCO3 by using both TG and the Cyclic and constant Decomposition Rate of Thermal Analysis. Thermal Analysis (Miller Ed.). Proc. 7th International Conference on Thermal Analysis, Wiley (London) 1982, Vol. 1, p. 99–103.Google Scholar
  68. 68.
    Reading M, Dollimore D, Rouquerol J, Rouquerol F. The measurement of meaningful activation energies using thermoanalytical methods–a tentative proposal. J Therm Anal. 1984;37:775–85.CrossRefGoogle Scholar
  69. 69.
    Criado JM, Ortega A, Rouquerol J, Rouquerol F. Un nuevo método de de Análisis Térmico: El Análisis Térmico a Velocidad de Reacción Controlada.I. Desarrollo histórico y considersciones generales. Bol Soc Esp Ceram Vidrio. 1987;25:407–14.Google Scholar
  70. 70.
    Ortega A, Akahouari S, Rouquerol F, Rouquerol J. On the suitability of controlled transformation rate thermal analysis (CRTA) for kinetic-studies 1. Determination of the activation-energy by the rate-jump method. Thermochim Acta. 1990;163:25–32.CrossRefGoogle Scholar
  71. 71.
    Criado JM, Diánez MJ, Macías M, Paradas MC. Crystalline structure and thermal stability of double strontium and barium carbonates. Thermochim Acta. 1990;171:229–38.CrossRefGoogle Scholar
  72. 72.
    Criado JM, Ortega A. Kinetic study of thermal decomposition of dolomite by controlled transformation rate thermal analysis. J Therm Anal. 1991;37:2369–75.CrossRefGoogle Scholar
  73. 73.
    Reading M, Dollimore D, Whittehead. The measurement of meaningful kinetic-parameters for solid-state decomposition reactions. J Therm Anal. 1991;37:2165–88.CrossRefGoogle Scholar
  74. 74.
    Koga N., Criado JM and Tanaka H. Kinetic analysis of inorganic solid state reactions by controlled rate thermal analysis. NetsuSokutei. 2000; 27:128–140 (in Japanese).Google Scholar
  75. 75.
    Málek J, Sesták J, Rouquerol F, Rouquerol J, Criado JM, Ortega A. Possibilities of two non-isothermal procedures (temperature or rate controlled) for kinetical studies. J Therm Anal. 1992;38:71–87.CrossRefGoogle Scholar
  76. 76.
    Ortega A, Akahouari S, Rouquerol F, Rouquerol J. On the suitability of controlled transformation rate thermal analysis (CRTA) for kinetic-studies 2. Comparison with conventional tg for the thermolysis of dolomite with different particle sizes. Thermochim Acta. 1994;235:197–204.CrossRefGoogle Scholar
  77. 77.
    Koga N, Criado JM. The influence of mass transfer phenomena on the kinetic analysis for the thermal decomposition of calcium carbonate by Constant Rate Thermal Analysis (CRTA) under vacuum. Int J Chem Kinet. 1998;30:737–44.CrossRefGoogle Scholar
  78. 78.
    Hatakeyamka T, Zhenay L. Handbook of thermal analysis. Chichester: Wiley; 1998.Google Scholar
  79. 79.
    Finary A, Salageanu I, Segal J. Non-isothermal kinetic study of the heterogeneous thermal decomposition of a mannich compound. J Therm Anal Calorim. 2000;61:239–42.CrossRefGoogle Scholar
  80. 80.
    Diánez MJ, Pérez-Maqueda LA, Criado JM. Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions. Rev Sci Instrum. 2004;75:2620–4.CrossRefGoogle Scholar
  81. 81.
    Criado JM, Pérez-Maqueda LA, Diánez MJ, Sánchez-Jiménez PE. Development of a universal constant rate thermal analysis system for being used with any thermoanalytical instrument. J Therm Anal Calorim. 2007;87:297–300.CrossRefGoogle Scholar
  82. 82.
    Criado JM, Morales J. Defects of thermogravimetric analysis for discerning between 1st order reactions and those taking place through Avrami-Erofeev’s mechanism. Thermochim Acta. 1976;16:382–7.CrossRefGoogle Scholar
  83. 83.
    Criado JM, Morales J. On the evaluation of kinetic-parameters from thermogravimetric curves. Thermochim Acta. 1980;41:125–7.CrossRefGoogle Scholar
  84. 84.
    Criado JM, Dollimore D, HealG R. A critical-study of the suitability of the Freeman and Carroll method for the kinetic-analysis of reactions of thermal-decomposition of solids. Thermochim Acta. 1982;54:159–65.CrossRefGoogle Scholar
  85. 85.
    Flynn JH. Thermal-analysis kinetics-problems, pitfalls and how to deal with them. J Therm Anal. 1988;34:367–81.CrossRefGoogle Scholar
  86. 86.
    Agrawal RK. Analysis of irreversible complex chemical-reactions and some observations on their overall activation-energy. Thermochim Acta. 1988;128:185–208.CrossRefGoogle Scholar
  87. 87.
    Vyazovkin SV, Lesnikovich AI. On the methods of solving the inverse problem of solid-phase reaction-kinetics 1. Methods based on discrimination. J Therm Anal. 1989;35:2169–88.CrossRefGoogle Scholar
  88. 88.
    Criado JM, Ortega A, Gotor F. Correlation between the shape of controlled rate thermal analysis curves and the kinetics of solid state reactions. Thermochim Acta. 1990;157:171–9.CrossRefGoogle Scholar
  89. 89.
    Koga N, Sesták J, Málek J. Distortion of the Arrhenius parameters by the inappropriate kinetic-model function. Thermochim Acta. 1991;188:333–6.CrossRefGoogle Scholar
  90. 90.
    Málek J. The kinetic analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  91. 91.
    Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.CrossRefGoogle Scholar
  92. 92.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Limitations of model-fitting methods for kinetic analysis: polystyrene thermal degradation. Resour Conserv Recycl. 2013;74:75–81.CrossRefGoogle Scholar
  93. 93.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chem Cent J. 2013;7:25.CrossRefGoogle Scholar
  94. 94.
    Tiernan MJ, Barnes PA, Parkes GMB. Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques. J Phys Chem B. 2001;105:220–8.CrossRefGoogle Scholar
  95. 95.
    Rouquerol J, Ganteaume M. Thermolysis under vacuum: essential influence of residual pressure on thermoanalytical curves and reaction-products. J Therm Anal. 1977;11:201–10.CrossRefGoogle Scholar
  96. 96.
    Stacey MH. Evolution of porosity during conversion of eta-alumina to a novel porous alpha-alumina fiber. Stud Surf Sci Catal. 1991;62:615–24.CrossRefGoogle Scholar
  97. 97.
    Stacey MH. Kinetics of decomposition of gibbsite and boehmite and the characterization of the porous products. Langmuir. 1987;3:681–6.CrossRefGoogle Scholar
  98. 98.
    Salles F, Douillard JM, Denoyel R, Bildstein O, Jullien M, Beurroies I, Van Damme H. Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy. J Colloid Interf Sci. 2009;333:510–22.CrossRefGoogle Scholar
  99. 99.
    Belgacem K, Llewellyn P, NNahdi K, Trabelsi-Ayadi M. Thermal behaviour study of the talc. Optoelectron Adv Mat Rapid Comm. 2008;2:332–6.Google Scholar
  100. 100.
    Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA. Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions. Appl Energy. 2013;108:108–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • L. A. Pérez-Maqueda
    • 1
  • J. M. Criado
    • 1
  • P. E. Sánchez-Jiménez
    • 1
  • M. J. Diánez
    • 1
  1. 1.Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla-C.S.I.C.SevilleSpain

Personalised recommendations