Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 1, pp 265–271 | Cite as

Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations

  • S. ElgharbiEmail author
  • K. Horchani-Naifer
  • M. Férid
Article

Abstract

The thermal behavior of Tunisian phosphorite was investigated with X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR), and Raman spectroscopies and DTA-TG measurements. The XRD patterns showed that the chief mineral constituents of calcined samples are calcium oxide and fluorapatite, while those in the raw phosphorite are calcite, dolomite, fluorapatite, and carbonate-fluorapatite. Physicochemical transformations result in the oxidation of organic matter, disappearance of calcite and dolomite crystalline phases, and partial dissociation of structural carbonates. The FT-IR and Raman spectra showed modifications of some bands; a decrease in the intensity of the v2 and v3 vibrations of carbonate groups and the appearance of new bands at 520 and 926 cm−1 after calcination of phosphorites at 800 °C. These bands were assigned to isomorphous substitutions of PO4 3− in apatite by SiO4 4−. Heat treatment alters the qualitative composition of the mineral as a result; the solubility of apatite in dilute citric acid was decreased.

Keywords

Tunisian phosphorite Calcinations Fluorapatite Calcite 

Notes

Acknowledgements

We thank Nabil Fattah Professor at Research center of Metlaoui in Company of phosphates of Gafsa for providing the phosphorites samples. This work is supported by the Ministry of Higher Education, Scientific Research and Information and Communication Technologies of Tunisia.

References

  1. 1.
    Kolevaa V, Petkova V. IR spectroscopic study of high energy activated Tunisian phosphorite. J Vibra Spec. 2012;58:125–32.CrossRefGoogle Scholar
  2. 2.
    Da Silva EF, Mlayah A, Gomes C, Noronha F, Cristina Sequeira C, Estevesd V, Marquesd ARF. Heavy elements in the phosphorite from Kalaat Khasba mine (North-westernTunisia): potential implications on the environment and human health. J Hazard Mater. 2010;182:232–45.CrossRefGoogle Scholar
  3. 3.
    Khaddor M, Ziyad M, Joffre J, Amblés A. Pyrolysis and characterization of the kerogen from the Morrocan Youssoufia rock phosphate. Chem Geol. 2002;186:17–30.CrossRefGoogle Scholar
  4. 4.
    Abouzeid A-ZM. Physical and thermal treatment of phosphate ores—an overview. Int J Miner Process. 2008;85:59–84.CrossRefGoogle Scholar
  5. 5.
    Blazy P, Jdid E A. Décarbonisation des phosphates sédimentaires par calcination dynamique. C. R. Acad. Sci. Paris, série Iia. 1995;321:287–94.Google Scholar
  6. 6.
    Blazy P, Jdid E A. Phénomènes de clinkérisation et de collagelors de la calcination du phosphate à gangue calcaire d’Akashat (Irak). C. R. Acad. Sci. Paris, série IIa. 1997;324:79–86.Google Scholar
  7. 7.
    Bojinova D. Thermal treatment of Tunisian phosphorite and additives of aluminium silicate. Thermochim Acta. 2003;404:155–62.CrossRefGoogle Scholar
  8. 8.
    Pelovski Y, Petkova V, Dombalov I. Thermal analysis of mechanoactivated mixtures of Tunisia phosphorite and ammonium sulfate. J Therm Anal. 2003;72:967–80.CrossRefGoogle Scholar
  9. 9.
    Slansky M. Geology of sedimentary phosphate. New York: North Oxford Academic; 1986.Google Scholar
  10. 10.
    Petkova V, Yaneva V. Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J Therm Anal Calorim. 2010;99:179–89.CrossRefGoogle Scholar
  11. 11.
    Tonsuaadu K, Gross AK, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110:647–59.CrossRefGoogle Scholar
  12. 12.
    Tonsuaadu K, Peld M, Bender V. Thermal analysis of apatite structure. J Therm Anal Calorim. 2003;72:363–71.CrossRefGoogle Scholar
  13. 13.
    Elliott J. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.Google Scholar
  14. 14.
    Fleet ME. Infrared spectra of carbonate apatites: ν2-Region bands. Biomaterials. 2009;30:1473–81.CrossRefGoogle Scholar
  15. 15.
    Liu Y. Review on the vibrational spectroscopy of apatites. J Wuhan Inst of Chem Technol. 2002;1:21–7.Google Scholar
  16. 16.
    Szilas C, Bender KC, Msolla MM, Borggaard OK. The reactivity of Tanzanian Minjingu phosphate rock can be assessed from the chemical and mineralogical composition. Geoderma. 2008;147:172–7.CrossRefGoogle Scholar
  17. 17.
    Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatite. Biomaterials. 2007;28:3043–54.CrossRefGoogle Scholar
  18. 18.
    Kaljuvee T, Kuusik R, Veiderma M. Enrichment of carbonate-phosphate ores by calcinations and air separation. Int J Miner Process. 1995;43:113–21.CrossRefGoogle Scholar
  19. 19.
    Knubovets R, Nathan Y, Shoval S, Rabinowitz J. Thermal transformations in phosphorites. J Therm Anal. 1997;50:229–39.CrossRefGoogle Scholar
  20. 20.
    Shoval S, Nathan Y. Analyzing the calcination of sulfur-rich calcareous oil shales using FT-IR spectroscopy and applying curve-fitting technique. J Therm Anal Calorim. 2011;105:883–96.CrossRefGoogle Scholar
  21. 21.
    Daniel BT, Cushla MM, Fordyce RE, Russell DF, Keith CG. Raman spectroscopy of fossil bioapatite—A proxy for diagenetic alteration of the oxygen isotope composition. Palaeogeogra Palaeocl. 2011;310:62–70.CrossRefGoogle Scholar
  22. 22.
    Jehlicka J, Urban O, Pokorny J. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim Acta A. 2003;59:2341–52.CrossRefGoogle Scholar
  23. 23.
    Awonusi A, Morris MD, Tecklenburg MJM. Carbonate assignment and calibration in the raman spectrum of apatite. J Calcif Tissue Int. 2007;81:46–52.CrossRefGoogle Scholar
  24. 24.
    Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E. Infrared and Raman microspectrometry study of fluor–fluor-hydroxy and hydroxy-apatite powders. J Mat Sci. 1997;8:271–6.Google Scholar
  25. 25.
    Zapata F, Roy RN. 2004. Use of phosphate rocks for sustainable agriculture: FAO Fertilizer and plant nutrition bulletin, vol. 13.Rome: FAO;2004.Google Scholar
  26. 26.
    Panchenko SV, Bobkov VI. Modeling of the heat strengthening of phosphorite pellets. Theor Found Chem Eng. 2002;36:183–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Laboratory of Physical Chemistry of Mineral Materials and their ApplicationsNational Research Center in Materials SciencesSolimanTunisia

Personalised recommendations