Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 1, pp 937–945 | Cite as

The metastable phases as modulators of biophysical behavior of liposomal membranes

The role of biomolecular sculpture of polymeric guest
  • Natassa Pippa
  • Stergios Pispas
  • Costas DemetzosEmail author


In this work, we investigate the alterations of the physicochemical, morphological, and thermotropic characteristics of conventional, stealth, and chimeric DPPC (dipalmitoylphosphatidylcholine) liposomes, caused by the incorporation of PEGylated lipid and block copolymers with different architectures and compositions. 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[Methoxy(Polyethylene glycol)-3000] (DPPE-PEG 3000) is the PEGylated lipid, poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) is the block copolymer, and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) is the gradient block copolymer, which are selected for preparing the liposomal systems. Light scattering techniques and differential scanning calorimetry (DSC) were used in order to extract information on the physicochemical/thermodynamic balance of the prepared liposomal systems. The physicochemical characteristics and the morphology via fractal analysis of these chimeric nanoassemblies were found to depend on the composition of the polymeric component, while DPPC liposomes were used for comparison reasons (reference system). The incorporation of polymeric components into liposomes promotes a structural rearrangement of lipid bilayers and affects their behavior, as DSC experiments indicated. The fluidity, the intervesicle interactions and the cooperativity of structural elements of liposomes were also changed significantly by polymer addition. It could be concluded that the different macromolecular architectures of the polymeric guest affect the thermotropic behavior of liposomal membrane by producing new metastable phases, and consequently promote new insights in the field of biophysical concept for designing and developing chimeric advanced drug delivery nano systems (aDDnSs).


Block copolymers Gradient copolymers Chimeric liposomes Differential scanning calorimetry Interdigitation Metastable phase 


  1. 1.
    Demetzos C. Differential Scanning Calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18:159–73.CrossRefGoogle Scholar
  2. 2.
    Pispas S. Self-assembled nanostructures in mixed anionic-neutral double hydrophilic block copolymer/cationic vesicle–forming surfactant solutions. Soft Matter. 2011;7:474–82.CrossRefGoogle Scholar
  3. 3.
    Pispas S. Vesicular structures in mixed block copolymer/surfactant solutions. Soft Matter. 2011;7:8697–701.CrossRefGoogle Scholar
  4. 4.
    Antunes FE, Marques EF, Miguel MG, Lindman B. Polymer-vesicle association. Adv Colloid Interface Sci. 2009;147–148:18–35.CrossRefGoogle Scholar
  5. 5.
    Leiske DL, Meckes B, Miller CE, Wu C, Walker TW, Lin B, Meron M, Ketelson HA, Toney MF, Fuller GG. Insertion mechanism of a poly(ethylene oxide)-poly(butylenes oxide) block copolymer into DPPC monolayer. Langmuir. 2011;27:11444–50.CrossRefGoogle Scholar
  6. 6.
    Nam J, Beales PA, Vanderlick TK. Giant phospholipid/block copolymer hydrid vesicles: mixing behavior and domain formation. Langmuir. 2011;27:1–6.CrossRefGoogle Scholar
  7. 7.
    Le Meins J-F, Schatz C, Lecommandoux S, Sandre O. Hydrid polymer/lipid vesicles: state of the art and future perspectives. Mater Today. 2013;16:397–402.CrossRefGoogle Scholar
  8. 8.
    Demetzos C, Pippa N. Advanced drug delivery nano systems (aDDnSs): a mini-review. Drug Deliv. 2014;In press.Google Scholar
  9. 9.
    Pippa N, Kaditi E, Pispas S, Demetzos C. PEO-b-PCL/DPPC chimeric nanocarriers: self-assembly aspects in aqueous and biological media and drug incorporation. Soft Matter. 2013;9:4073–82.CrossRefGoogle Scholar
  10. 10.
    Milonaki Y, Kaditi E, Pispas S, Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation. J Polym Sci A: Polym Chem. 2012;50:1226.CrossRefGoogle Scholar
  11. 11.
    Pippa N, Kaditi E, Pispas S, Demetzos C. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers. J Nanopart Res. 2013;15:1685.CrossRefGoogle Scholar
  12. 12.
    Pippa N, Merkouraki M, Pispas S, Demetzos C. DPPC:mPOx chimeric advanced Drug Delivery nanosystems (chi-aDDnSs): physicochemical and structural characterization, stability and drug release studies. Int J Pharm. 2013;450(1–2):1–10.CrossRefGoogle Scholar
  13. 13.
    Pippa N, Psarommati F, Pispas S, Demetzos C. The shape/morphology balance: a study of stealth liposomes via fractal analysis and drug encapsulation. Pharm Res. 2013;30(9):2385–95.CrossRefGoogle Scholar
  14. 14.
    Pippa N, Deli E, Mentzali E, Pispas S, Demetzos C. PEO-b-PCL grafted DPPC liposomes: physicochemical characterization and stability studies of novel bio-inspired advanced Drug Delivery nano Systems (aDDnSs). J Nanosc Nanotechnol 2013; In press.Google Scholar
  15. 15.
    Burchard W. Static and dynamic light scattering from branched polymers and biopolymers. Adv Polym Sci. 1983;48:1–124.CrossRefGoogle Scholar
  16. 16.
    Pippa N, Gardikis K, Pispas S, Demetzos C. The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J Ther Anal Calorim. 2014; In press.Google Scholar
  17. 17.
    Sculz M, Glatte D, Meister A, Scholtysek P, Kerth A, Blume A, Bacia K, Binder WH. Hydrid lipid/polymer giant unilameral vesicles: effects of the incorporated biocompatible PIB-PEO block copolymers on vesicles properties. Soft Matter. 2011;7:8100–10.CrossRefGoogle Scholar
  18. 18.
    Chemin M, Brun P-M, Lecommandoux S, Sandre O, Le Meins J-F. Hydrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane. Soft Matter. 2012;8:2867–74.CrossRefGoogle Scholar
  19. 19.
    Lim SK, de Hoog H-P, Parikh AN, Nallani M, Liedberg B. Hybrid, nanoscale phospholipid/block copolymer vesicles. Polymers. 2013;5:1102–14.CrossRefGoogle Scholar
  20. 20.
    Olubummo A, Schultz M, Lechner B-D, Scholtysek P, Bacia K, Blume A, Kressler J, Binder WH. Controlling the localization of polymer-functionalized nanoparticles in mixed lipid/polymer membranes. ACS Nano. 2012;6:8713–27.CrossRefGoogle Scholar
  21. 21.
    Scultz M, Olubummo A, Binder WH. Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter. 2012;8:4849–64.CrossRefGoogle Scholar
  22. 22.
    Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998;1376:91–145.CrossRefGoogle Scholar
  23. 23.
    Lasic DD. On the thermodynamic stability of liposomes. J Colloid Interface Sci. 1990;1:302–4.CrossRefGoogle Scholar
  24. 24.
    Tseng LP, Liang HJ, Chung TW, Huang YY, Liu DZ. Liposomes incorporated with cholesterol for drug release triggered by magnetic field. J Med Biol Eng. 2007;27(1):29–31.Google Scholar
  25. 25.
    Matsingou C, Demetzos C. Calorimetric study on the induction of interdigitated phase in hysdrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability: the role of chemical structure. Chem Phys Lipids. 2007;145:45–62.CrossRefGoogle Scholar
  26. 26.
    Gardikis K, Hatziantoniou S, Signorelli M, Pusceddu M, Micha-Scretta M, Schiraldi A, Demetzos C, Fessas D. Thermodynamics and structural characterization of liposomal locked-in dendrimers as drug carriers. Colloids Surf B. 2010;81:11–9.CrossRefGoogle Scholar
  27. 27.
    Chiu MH, Prenner EJ. Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci. 2011;3(1):39–59.CrossRefGoogle Scholar
  28. 28.
    Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.CrossRefGoogle Scholar
  29. 29.
    Polozova A, Li X, Shangguan T, Meers P, Schuette DR, Ando N, Gruner SM, Perkins WR. Formation of homogeneous unilamellar liposomes from an Interdigitated matrix. Biochim Biophys Acta. 2005;1668(1):117–25.CrossRefGoogle Scholar
  30. 30.
    Okhi S, Ohshima H. Interaction and aggregation of lipid vesicles (DLVO theory versus modified DLVO theory). Colloids Surf B. 1999;14:27–45.CrossRefGoogle Scholar
  31. 31.
    Okhi S, Arnold K. A mechanism for ion-induced lipid fusion. Colloids Surf B. 2000;18:83–97.CrossRefGoogle Scholar
  32. 32.
    Singh AV, Nath LK. Evaluation of compatibility of tablet excipients and novel synthesized polymer with lamivudine. J Ther Anal Calorim. 2012;108(1):263–7.CrossRefGoogle Scholar
  33. 33.
    Santos LB, Ribeiro CA, Capela JMV, Crespi MS, Pimentel MAS, De Julio M. Kinetic parameters for thermal decomposition of hydrazine. J Therm Anal Calorim. 2013;113:1209–16.CrossRefGoogle Scholar
  34. 34.
    Yonemochi E, Sano S, Yoshihashi Y, Terada K. Diffusivity of amorphous drug in solid dispersion. J Therm Anal Calorim. 2013;113:1505–10.CrossRefGoogle Scholar
  35. 35.
    Yoshihashi Y, Sato M, Kawano Y, Yonemochi E, Terada K. Evaluation of physicochemical properties on the blending process of pharmaceutical granules with magnesium stearate by thermal effusivity sensor. J Therm Anal Calorim. 2013;113:1281–5.CrossRefGoogle Scholar
  36. 36.
    Meng X, Zhang H, Sun L, Xu F, Jiao Q, Zhao Z, Zhang J, Zhou H, Sawada Y, Liu Y. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Ther Anal Calorim. 2013;111:377–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Natassa Pippa
    • 1
    • 2
  • Stergios Pispas
    • 2
  • Costas Demetzos
    • 1
    Email author
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of AthensAthensGreece
  2. 2.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations