Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 2, pp 661–668 | Cite as

Thermal, morphological, and mechanical properties of ethyl vanillin immobilized in polyvinyl alcohol by electrospinning process

  • Steva Lević
  • Nina Obradović
  • Vladimir Pavlović
  • Bojana Isailović
  • Ivana Kostić
  • Miodrag Mitrić
  • Branko Bugarski
  • Viktor Nedović


In this study, polyvinyl alcohol (PVA) nanofibers with ethyl vanillin as an active compound were prepared using electrospinning technique. The final products of electrospinning process were in the form of nanofibers films. PVA/ethyl vanillin nanofibers, having fibers diameters in the range 100–1700 nm, were successfully electrospun from ethanol/water mixture of PVA and ethyl vanillin. The effects of immobilization process on ethyl vanillin thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC showed significant influence of immobilization process on thermal properties of ethyl vanillin. It was noticed that melting point of immobilized ethyl vanillin was lower (~55 °C) compared to free flavor (~77 °C). Our results showed that films based on PVA/ethyl vanillin nanofibers are mechanically stable.


Polyvinyl alcohol Ethyl vanillin Electrospinning DSC Nanofibers 



This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (Project Nos. III46001, III46010 and OI172057).


  1. 1.
    Reneker HD, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216–23.CrossRefGoogle Scholar
  2. 2.
    Ramakrishna S, Fujihara K, Teo EW, Lim CT, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing; 2005.CrossRefGoogle Scholar
  3. 3.
    Qin X, Wu D. Effect of different solvents on poly (caprolactone)(PCL) electrospun nonwoven membranes. J Therm Anal Calorim. 2012;107:1007–13.CrossRefGoogle Scholar
  4. 4.
    Goodship V, Jacobs D. Polyvinyl alcohol: materials, processing and applications. In: Gardiner F, editor. Rapra Review Reports 16, Report 192. Shrewsbury, Shropshire: Smithers Rapra Technology; 2005. pp. 4–16.Google Scholar
  5. 5.
    Taepaiboon P, Rungsardthong U, Supaphol P. Drug-loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology. 2006;17:2317–29.CrossRefGoogle Scholar
  6. 6.
    Kayaci F, Uyar T. Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem. 2012;133:641–9.CrossRefGoogle Scholar
  7. 7.
    Jia L, Qin XH. The effect of different surfactants on the electrospinning poly (vinyl alcohol)(PVA) nanofibers. J Therm Anal Calorim. 2013;112:595–605.CrossRefGoogle Scholar
  8. 8.
    Ma Q, Mao B, Cebe P. Inorganic reinforcement in PET/silica electrospun nanofibers. J Therm Anal Calorim. 2012;109:1245–51.CrossRefGoogle Scholar
  9. 9.
    Burdock AG. Fenaroli’s handbook of flavor ingredients. 6th ed. Boca Raton: CRC Press; 2009.CrossRefGoogle Scholar
  10. 10.
    Hussain K, Thorsen G, Malthe-Sørenssen D. Nucleation and metastability in crystallization of vanillin and ethyl vanillin. Chem Eng Sci. 2001;56:2295–304.CrossRefGoogle Scholar
  11. 11.
    Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly (vinyl alcohol) mats. Eur Polym J. 2005;41:423–32.CrossRefGoogle Scholar
  12. 12.
    Mollá S, Compañ V, Gimenez E, Blazquez A, Urdanpilleta I. Novel ultrathin composite membranes of Nafion/PVA for PEMFCs. Int J Hydrog Energy. 2011;36:9886–95.CrossRefGoogle Scholar
  13. 13.
    Levic S, Djordjevic V, Rajic N, Milivojevic M, Bugarski B, Nedovic V. Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly (vinyl alcohol) beads. Chem Pap. 2013;67:221–8.CrossRefGoogle Scholar
  14. 14.
    Li L, Hsieh YL. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res. 2006;341:374–81.CrossRefGoogle Scholar
  15. 15.
    Arias M, Pantojas MV, Perales O, Otaño W. Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers. J Magn Magn Mater. 2011;323:2109–14.CrossRefGoogle Scholar
  16. 16.
    Mansur SH, Sadahira MC, Souza NA, Mansur APA. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C. 2008;28:539–48.CrossRefGoogle Scholar
  17. 17.
    Li Y, Zhang X, Zhenga J. Wang X. 3-Ethoxy-4-hydroxybenzaldehyde. Acta Crystallogr E. 2008:E64.Google Scholar
  18. 18.
    Li X, Kanjwal MA, Lin L, Chronakis SI. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloid Surf B. 2013;103:182–8.CrossRefGoogle Scholar
  19. 19.
    Han J, Branford-White JC, Zhu ML. Preparation of poly(ε-caprolactone)/poly(trimethylene carbonate) blend nanofibers by electrospinning. Carbohydr Polym. 2010;79:214–8.CrossRefGoogle Scholar
  20. 20.
    Arinstein A, Liu Y, Rafailovich M, Zussman E. Shifting of the melting point for semi-crystalline polymer nanofibers. Europhys Lett. 2011;93:46001.CrossRefGoogle Scholar
  21. 21.
    de Roos KB. Effect of texture and microstructure on flavour retention and release. Int Dairy J. 2003;13:593–605.CrossRefGoogle Scholar
  22. 22.
    de Roos KB. Understanding and controlling the behaviour of aroma compounds in thermally processed foods. Trends Food Sci Technol. 2006;17:236–43.CrossRefGoogle Scholar
  23. 23.
    Karathanos TV, Mourtzinos I, Yannakopoulou K, Andrikopoulos KN. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with b-cyclodextrin. Food Chem. 2007;101:652–8.CrossRefGoogle Scholar
  24. 24.
    Modafferi V, Panzera G, Donato A, Antonucci PL, Cannilla C, Donato N, Spadaro D, Neri G. Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens Actuator B. 2012;163:61–8.CrossRefGoogle Scholar
  25. 25.
    Asran SA, Henning S, Michler HG. Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer. 2010;51:868–76.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Steva Lević
    • 1
  • Nina Obradović
    • 2
  • Vladimir Pavlović
    • 1
  • Bojana Isailović
    • 3
  • Ivana Kostić
    • 3
  • Miodrag Mitrić
    • 4
  • Branko Bugarski
    • 3
  • Viktor Nedović
    • 1
  1. 1.Faculty of AgricultureUniversity of BelgradeBelgrade-ZemunSerbia
  2. 2.Institute of Technical Sciences-SASABelgradeSerbia
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Institute of Nuclear Science VinčaUniversity of BelgradeBelgradeSerbia

Personalised recommendations