Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 1, pp 255–262 | Cite as

Influence of Ca2+ substitution on thermal, structural, and conductivity behavior of Bi1−xCaxFeO3−y (0.40 ≤ x ≤ 0.55)

Article

Abstract

Bi1−xCaxFeO3−y (0.40 ≤ x ≤ 0.55) perovskite oxides have been synthesized by solid-state reaction method to study their properties as a cathode material for intermediate temperature solid oxide fuel cells. The as prepared samples were characterized by X-ray diffraction, differential thermal analyzer/thermogravimetry, dilatometer, and impedance spectroscopy to study their structural, thermal, and electrical properties. The Rietveld refinement results confirmed that all the samples exhibit tetragonal structure with P4mm space group. In addition to this, sample x = 0.55 exhibits Ca2Fe2O5 as a secondary phase. It has been observed that lattice parameters decrease with increase in calcium content. The thermal expansion coefficient and ionic conductivity increases with increase in calcium content up to x = 0.50. The highest ionic conductivity is observed for Bi0.5Ca0.5FeO3−y i.e. 1.71 × 10−2 S cm−1.

Keywords

Rietveld refinement Thermal properties Ac impedance spectroscopy Mixed ionic-electronic oxide 

Notes

Acknowledgements

The authors are thankful to Defense Research and Development Organization (DRDO) for financial support vide letter no. ERIP/ER/1103976/M/01/1411. The authors are thankful to Dr. B. N. Chudasama for his help in thermal measurements and discussion.

References

  1. 1.
    Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem. 2010;14:1125–44.CrossRefGoogle Scholar
  2. 2.
    Singhal SC, Kendall K. High-temperature solid oxide fuel cells: fundamentals, design and applications. Oxford: Elsevier; 2003.Google Scholar
  3. 3.
    Sun CW, Stimming U. Recent anode advances in solid oxide fuel cells. J Power Sources. 2007;171:247–60.CrossRefGoogle Scholar
  4. 4.
    Adler SB. Factors governing oxygen reduction in solid oxide fuel cells cathodes. Chem Rev. 2004;104:4791–843.CrossRefGoogle Scholar
  5. 5.
    Yang L, Zuo C, Wang S, Cheng Z, Liu M. A novel composite cathode for low-temperature sofcs based on oxide proton conductors. Adv Mater. 2008;20:3280–3.CrossRefGoogle Scholar
  6. 6.
    Zhou W, Ran R, Shao Z, Zhuang W, Jia J, Gu H, Jin W, Xu N. Barium and strontium-enriched (Ba0.5Sr0.5)Co0.8Fe0.2O3 oxides as high-performance cathodes for intermediate-temperature. Acta Mater. 2008;56:2687–99.CrossRefGoogle Scholar
  7. 7.
    Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y. Ln1−xSrxCo1−yFeyO3−δ (Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics. 2003;158:55–65.CrossRefGoogle Scholar
  8. 8.
    Minh NQ. Ceramic fuel cells. J Am Ceram Soc. 1993;76:563–88.CrossRefGoogle Scholar
  9. 9.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N. Mixed ionic electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite type oxides. Mater Res Bull. 1988;23:51–8.CrossRefGoogle Scholar
  10. 10.
    Shao Z, Haile S. Mixed ionic electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite type oxides. Nature. 2004;431:170–3.CrossRefGoogle Scholar
  11. 11.
    Ivers-Tiffee E, Weber A, Herbstritt D. Mixed ionic electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite type oxides. J Eur Ceram Soc. 2001;21:1805–11.CrossRefGoogle Scholar
  12. 12.
    Deng ZQ, Yang WS, Liu W, Chen CS. Relationship between transport properties and phase transformations in mixed-conducting oxides. J Solid State Chem. 2006;179:362–9.CrossRefGoogle Scholar
  13. 13.
    Xia CR, Liu ML. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ion. 2001;144:249–55.CrossRefGoogle Scholar
  14. 14.
    Yan L, Ding H, Zhu Z, Xue X. Investigation of cobalt-free perovskite Ba0.95La0.05FeO3−δ as a cathode for proton-conducting solid oxide fuel cells. J Power Sources. 2011;196:9352–5.CrossRefGoogle Scholar
  15. 15.
    Zhou W, Shao ZP, Ran R, Jin WQ, Xu NP. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chem Commun. 2008;44:5791–3.CrossRefGoogle Scholar
  16. 16.
    Garcia-Munoz JL, Frontera C, Aranda MAG, Llobet A, Ritter C. High temperature orbital and charge ordering in Bi1/2Sr1/2MnO3. Phys Rev B. 2001;63:064415 (1-4).CrossRefGoogle Scholar
  17. 17.
    Boivin JC, Mairesse G. Recent material development in fast oxide ion conductors. Chem Mater Chem Mat. 1998;10:2870–88.CrossRefGoogle Scholar
  18. 18.
    Liu B, Jiang Z, Ding B, Chen F, Xia C. Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells. J Power Sources. 2011;196:999–1005.CrossRefGoogle Scholar
  19. 19.
    Niu Y, Zhou W, Sunarso J, Ge L, Zhu Z, Shao Z. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J Mater Chem. 2010;20:9619–22.CrossRefGoogle Scholar
  20. 20.
    Khomchenko VA, Kiselev DA, Kopcewicz M, Maglione M, Shvartsman V, Borisov P, Kleemann W, Lopes AML, Pogorelov YG, Araujo JP, Rubinger RM, Sobolev NA, Vieira JM, Kholkin AL. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J Magn Magn Mater. 2009;32:1692–8.CrossRefGoogle Scholar
  21. 21.
    Schiemer J, Withers R, Noren L, Liu Y, Bourgeois L, Stewart G. Detailed phase analysis and crystal structure investigation of a Bi1−xCaxFeO3−x/2 perovskite-related solid solution phase and selected property measurements thereof. Chem Mater. 2009;21:4223–32.CrossRefGoogle Scholar
  22. 22.
    Maso N, West AR. Electrical properties of Ca-doped BiFeO3 ceramics: from p-type semiconduction to oxide-ion conduction. Chem Mater. 2012;24:2127–32.CrossRefGoogle Scholar
  23. 23.
    Jaiprakash, Kumar Y, Chauhan RS, Kumar R. Study of dielectric properties of single phase Bi1−xCaxFeO3 (x = 0.1, 0.3, 0.5). Solid State Sci. 2011;13:1869–73.CrossRefGoogle Scholar
  24. 24.
    Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ. The atomic structure of BiFeO3. Solid State Comm. 1969;7:701–4.CrossRefGoogle Scholar
  25. 25.
    Withers RL, Bourgeois L, Balamurugan K, Kumar NH, Santhosh PN, Woodward PM. Structure, crystal chemistry, and thermal evolution of the δ-Bi2O3-related phase Bi9ReO17. J Solid State Chem. 2009;182:2176–84.CrossRefGoogle Scholar
  26. 26.
    Varshney D, Kumar A, Verma K. Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J. Alloys Comp. 2011;509:8421–6.CrossRefGoogle Scholar
  27. 27.
    Bhushan B, Basumallick A, Bandopadhyay SK, Vasanthacharya NY, Das D. Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles. J Phys D Appl Phys. 2009;42:065004(1)–8).CrossRefGoogle Scholar
  28. 28.
    Khomskii DI. Multiferroics: different ways to combine magnetism and ferroelectricity. J Magn Magn Mater. 2006;306:1–8 Em.CrossRefGoogle Scholar
  29. 29.
    Kim TY, Jang HM, Cho SM. Effects of La-doping on the cubic–tetragonal phase transition and short-range ordering in PbTiO3. J Appl Phys. 2002;91:336–43.CrossRefGoogle Scholar
  30. 30.
    Li S, Lu Z, Huang X, Wei B, Sui W. Electrical and thermal properties of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ perovskite oxides. Solid State Ion. 2007;178:417–22.CrossRefGoogle Scholar
  31. 31.
    Chen F, Sorensen OT, Meng G, Peng D. Chemical stability study of BaCe0.9Nd0.1O3-α high temperature proton conducting ceramic. J Mater Chem. 1997;7:481–5.CrossRefGoogle Scholar
  32. 32.
    Roy M, Sahu S, Barbar SK, Jangid S. Synthesis, electrical and thermal properties of Bi4V2−xMexO11 ceramics. J Therm Anal Calorim. 2013;113:873–9.CrossRefGoogle Scholar
  33. 33.
    Petric A, Huang P, Tietz F. Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion. 2002;135:719–25.CrossRefGoogle Scholar
  34. 34.
    Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales JC, Nunez P, Sanchez-Bautista C, Santos-Gracia AJD, Canales-Vazquez J. On Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.1–0.9) oxides as cathode materials for La0.9Sr0.1Ga0.8Mg0.2O2.85 based IT-SOFCs. Int J Hydrog Energy. 2009;34:9486–95.CrossRefGoogle Scholar
  35. 35.
    Patra H, Rout SK, Pratihar SK, Bhattacharya S. Thermal, electrical and electrochemical characteristics of Ba1−xSrxCo0.8Fe0.2O3−δ cathode material for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy. 2011;36:11904–13.CrossRefGoogle Scholar
  36. 36.
    Zhao H, Shen W, Zhu Z, Li X, Wang Z. Synthesis of Ba0.5Sr0.5Co0.2Fe0.8O3 BSCF) nanoceramic cathode powders by sol–gel Process for solid oxide fuel cell (SOFC) application. J Power Sources. 2008;182:503–9.CrossRefGoogle Scholar
  37. 37.
    Singla G, Jha PK, Gill JK, Singh K. Structural, thermal and electrical properties of Ti4+ substituted Bi2O3 solid systems. Ceram Int. 2012;38:2065–70.CrossRefGoogle Scholar
  38. 38.
    Shao Z, Xiong G, Tong J, Dong H, Yang W. Ba effect in doped Sr(Co0.8Fe0.2)O3 on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep Purif Technol. 2001;25:419–29.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations