Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 3, pp 1375–1383 | Cite as

Synthesis and polymorphism evaluation of the 3,5-bis(decyloxy)benzaldehyde

  • Cláudia T. Arranja
  • Mariana Marcos
  • Manuela R. Silva
  • M. Ermelinda S. Eusébio
  • Ricardo A. E. CastroEmail author
  • Abílio J. F. N. SobralEmail author


In this work, 3,5-bis(decyloxy)benzaldehyde, a precursor of long chain amphiphilic BODIPYs, was synthesized and its polymorphic behavior was characterized by differential scanning calorimetry, polarized light thermo microscopy, infrared spectroscopy, and XRPD. From the combined use of these techniques, an interesting polymorphic behavior was observed, and four polymorphs were identified. The initial compound melts around room temperature, ca. 30 °C, and several polymorphic forms of lower melting point are obtained by cooling the melt. A thermal program could be developed that allows obtaining each form independently.


3,5-bis(decyloxy)benzaldehyde Polymorphism Calorimetry Thermomicroscopy 



This work was supported by PEst-C/QUI/UI0313/2011, PEst-OE/SAU/UI0177/2011 FCT (FEDER), PEst-C/FIS/UI0036/2011, and FCT/QREN-COMPETE through projects PTDC/AAC-CLI/098308/2008, PTDC/AAC-CLI/118092/2010, and SFRH/BD/48269/2008.

Supplementary material

Supplementary material 1 (WMV 65552 kb)

Supplementary material 2 (WMV 12817 kb)

Supplementary material 3 (WMV 62306 kb)

Supplementary material 4 (WMV 83585 kb)

Supplementary material 5 (WMV 40195 kb)

10973_2014_3904_MOESM6_ESM.tif (74 kb)
Supplementary material 6 (TIFF 73 kb)
10973_2014_3904_MOESM7_ESM.tif (79 kb)
Supplementary material 7 (TIFF 78 kb)
10973_2014_3904_MOESM8_ESM.tif (59 kb)
Supplementary material 8 (TIFF 58 kb)
10973_2014_3904_MOESM9_ESM.tif (86 kb)
Supplementary material 9 (TIFF 86 kb)


  1. 1.
    Carey FA. Organic chemistry. 5th ed. New York: McGraw Hill; 2003.Google Scholar
  2. 2.
    Smith KM. In: Kadish KM, Smith KM, Guilard R, editors. The porphyrin handbook: synthesis and organic chemistry, vol. 1. New York: Academic Press; 2000. p. 1–44.Google Scholar
  3. 3.
    Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev. 2007;107:4891–932.CrossRefGoogle Scholar
  4. 4.
    Silva P, Fonseca SM, Arranja CT, Burrows HD, Urbano AM, Sobral AJFN. A new nonconjugated naphthalene derivative of meso-tetra-(3-hydroxy)-phenyl-porphyrin as a potential sensitizer for photodynamic therapy. Photochem Photobiol. 2010;86:1147–53.CrossRefGoogle Scholar
  5. 5.
    Sobral AJFN, Eléouet S, Rousset N, Gonsalves AMdAR, LeMeur O, Bourré L, Patrice T. New sulfonamide and sulfonic ester porphyrins as sensitizers for photodynamic therapy. J Porphyrins Phthalocyanines. 2002;06:456–62.CrossRefGoogle Scholar
  6. 6.
    Calzavara-Pinton P, Rossi MT, Sala R, Venturini M. Photodynamic antifungal chemotherapy. Photochem Photobiol. 2012;88:512–22.CrossRefGoogle Scholar
  7. 7.
    Ziessel R, Ulrich G, Harriman A. The chemistry of Bodipy: a new El Dorado for fluorescence tools. New J Chem. 2007;31:496–501.CrossRefGoogle Scholar
  8. 8.
    Benstead M, Mehl GH, Boyle RW. 4,4 ‘-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) as components of novel light active materials. Tetrahedron. 2011;67:3573–601.CrossRefGoogle Scholar
  9. 9.
    Frein S, Camerel F, Ziessel R, Barbera J, Deschenaux R. Highly fluorescent liquid-crystalline dendrimers based on borondipyrromethene dyes. Chem Mater. 2009;21:3950–9.CrossRefGoogle Scholar
  10. 10.
    Cozzi PG. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev. 2004;33:410–21.CrossRefGoogle Scholar
  11. 11.
    Bhattacharjee CR, Datta C, Das G, Mondal P. Novel photoluminescent mesogenic Schiff-base ligands bearing [N4O4] donors and their bimetallic Zn(II) complexes. Mater Sci Eng, C. 2012;32:735–41.CrossRefGoogle Scholar
  12. 12.
    Abe Y, Takagi Y, Nakamura M, Takeuchi T, Tanase T, Yokokawa M, Mukai H, Megumi T, Hachisuga A, Ohta K. Structural, photophysical, and mesomorphic properties of luminescent platinum(II)-salen Schiff base complexes. Inorg Chim Acta. 2012;392:254–60.CrossRefGoogle Scholar
  13. 13.
    Rubcic M, Uzarevic K, Halasz I, Bregovic N, Malis M, Dilovic I, Kokan Z, Stein RS, Dinnebier RE, Tomisic V. Desmotropy, polymorphism, and solid-state proton transfer: four solid forms of an aromatic o-hydroxy Schiff base. Chemistry. 2012;18:5620–31.CrossRefGoogle Scholar
  14. 14.
    Liu L, Li P-Z, Zhu L, Zou R, Zhao Y. Microporous polymelamine network for highly selective CO2 adsorption. Polymer. 2013;54:596–600.CrossRefGoogle Scholar
  15. 15.
    Rabbani MG, El-Kaderi HM. Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater. 2012;24:1511–7.CrossRefGoogle Scholar
  16. 16.
    Xu C, Hedin N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J Mater Chem A. 2013;1:3406–14.CrossRefGoogle Scholar
  17. 17.
    Sobral AJFN, Arranja CT, Fonseca SM, Justino LLG, Castro RAE, Benniston A, Harriman A, Burrows HD (Submitted) Liquid and low melting double-tailed long chain amphiphilic BODIPYs: Synthesis, photophysical and electrochemical evaluation. Dyes and Pigments.Google Scholar
  18. 18.
    Sabbah R, An XW, Chickos JS, Leitao MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.CrossRefGoogle Scholar
  19. 19.
    Della Gatta G, Richardson MJ, Sarge SM, Stolen S. Standards, calibration, and guidelines in microcalorimetry - Part 2. Calibration standards for differential scanning calorimetry - (IUPAC Technical Report). Pure Appl Chem. 2006;78:1455–76.CrossRefGoogle Scholar
  20. 20.
    Gránásy L, Pusztai T, Tegze G, Warren JA, Douglas JF. Growth and form of spherulites. Phys Rev E. 2005;72:011605.CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D. 01. Gaussian, Inc., Wallingford, CT.Google Scholar
  22. 22.
    Foresman JB, Frisch A. Exploring chemistry with electronic structure methods. 2nd ed. Pittsburgh: Gaussian Inc; 1996.Google Scholar
  23. 23.
    Li H-W, Strauss HL, Snyder RG. Differences in the IR methylene rocking bands between the crystalline fatty acids and n-alkanes: frequencies, intensities, and correlation splitting. J Phys Chem A. 2004;108:6629–42.Google Scholar
  24. 24.
    Wong PT. Pressure-induced correlation field splitting of vibrational modes: structural and dynamic properties in lipid bilayers and biomembranes. Biophys J. 1994;66:1505–14.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Cláudia T. Arranja
    • 1
  • Mariana Marcos
    • 1
  • Manuela R. Silva
    • 2
  • M. Ermelinda S. Eusébio
    • 1
  • Ricardo A. E. Castro
    • 3
    Email author
  • Abílio J. F. N. Sobral
    • 1
    Email author
  1. 1.CQC, Department of ChemistryUniversity of CoimbraCoimbraPortugal
  2. 2.CEMDRX, Department of PhysicsUniversity of CoimbraCoimbraPortugal
  3. 3.CEF, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations