Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 547–556 | Cite as

Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays

  • Alejandra Tironi
  • Monica A. Trezza
  • Alberto N. Scian
  • Edgardo F. Irassar
Article

Abstract

The use of calcined clays as partial replacement of cement is encouraged since it promotes the reduction of the green-house gas emission and the energy requirement of cement-based material, maintaining or enhancing the mechanical properties and the durable performance of these materials. In this paper, the use of thermal methods—DTA/TG and calorimetry—to select and to evaluate two kaolinitic clays for their use as pozzolanic materials was explored. The content and crystallinity of kaolinite in clays can be determined by DTA/TG analysis, and this technique is also suitable to select the calcination temperature for complete kaolinite dehydroxylation. Calorimetric analysis on blended cements (30 % by mass of replacement) can differentiate the reactivity of calcined kaolinitic clays. Results show that more reactive calcined kaolinitic clay develops the second and third peaks earlier than those of PC with great intensity and high acceleration. The reactivity of calcined clays is associated to raw materials containing kaolinite with high structural disorder that determines calcined clays with large specific surface area, high grindability, and small mean particles size (d 50) for the same grinding objective. Finally, the DTA/TG analysis can determine the type and the amount of hydrated phases obtained at different ages to evaluate the pozzolanic reaction of calcined clay in accordance with the standardized pozzolanic activity index.

Keywords

Kaolinite Calcined clay Pozzolanic activity Cement DTA/TG Isothermal calorimetry 

References

  1. 1.
    Habert G, Billard C, Rossi P, Chen C, Roussel N. Cement production technology improvement compared to factor 4 objectives. Cem Concr Res. 2010;40:820–6.CrossRefGoogle Scholar
  2. 2.
    Yang KH, Hwang HZ, Kim SY, Song JK. Development of a cementless mortar using hwangtoh binder. Build Environ. 2007;42:3717–25.CrossRefGoogle Scholar
  3. 3.
    Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material. Optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81:457–62.CrossRefGoogle Scholar
  4. 4.
    Cherem da Cunha AL, Gonçalves JP, Büchler PM, Dweck J. Effect of metakaolin pozzolanic activity in the early stages of cement type II paste and mortar hydration. J Therm Anal Calorim. 2008;92:115–9.CrossRefGoogle Scholar
  5. 5.
    Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43:392–400.CrossRefGoogle Scholar
  6. 6.
    Murat M. Hydration reaction and hardening of calcined clays and related minerals. I. Preliminary investigation on metakaolinite. Cem Concr Res. 1983;13:259–66.CrossRefGoogle Scholar
  7. 7.
    Tironi A, Trezza MA, Scian AN, Irassar EF. Kaolinitic calcined clays: factors affecting its performance as pozzolans. Constr Build Mater. 2012;28:276–81.CrossRefGoogle Scholar
  8. 8.
    Lagier F, Kurtis KE. Influence of Portland cement composition on early age reactions with metakaolin. Cem Concr Res. 2007;37:1411–7.CrossRefGoogle Scholar
  9. 9.
    Andreis RR. Diagénesis y arcillas intersiciales en las unidades neopaleozoicas del grupo Paganzo—La Rioja. Rev As Geo Arg. 2006;61:364–9.Google Scholar
  10. 10.
    Volkheimer W. Observaciones geológicas en el área de Ingeniero Jacobacci y adyacencias (Provincia de Río Negro). Rev As Geo Arg. 1973;28:13–36.Google Scholar
  11. 11.
    EN 197-1:2011. Cementos comunes: composición, especificaciones y criterios de conformidad.Google Scholar
  12. 12.
    Shvarzman A, Kovler K, Grader GS, Shter GE. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33:405–16.CrossRefGoogle Scholar
  13. 13.
    Bich Ch, Ambroise J, Péra J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 2009;44:194–200.CrossRefGoogle Scholar
  14. 14.
    Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. New York: Wiley; 1976.Google Scholar
  15. 15.
    Wilson MJ. A Handbook of determinative methods in clay mineralogy. New York: Chapman and Hall Publications; 1987.Google Scholar
  16. 16.
    Aparicio P, Galan E. Mineralogical interference on kaolinite crystallinity index measurements. Clays Clay Miner. 1999;47:12–27.CrossRefGoogle Scholar
  17. 17.
    He H, Yuan P, Guo J, Zhu J, Hu C. The influence of random defect density on the thermal stability of kaolinites. J Am Ceram Soc. 2005;88:1017–9.CrossRefGoogle Scholar
  18. 18.
    ASTM C204-11. Standard test methods for fineness of hydraulic cement by air-permeability Apparatus.Google Scholar
  19. 19.
    Kogel JE, Trivedi NC, Barker JM, Stanley TK. Industrial minerals & rocks. 7TH ed. Englewood: Society for Mining, Metallurgy, and Exploration; 2006.Google Scholar
  20. 20.
    Tironi A, Trezza MA, Irassar EF, Scian AN. Thermal treatment of kaolin: effect on the pozzolanic activity. Proc Mater Sci. 2012;2012(1):343–50.Google Scholar
  21. 21.
    Tironi A, Trezza MA, Irassar EF, Scian AN. Tratamiento térmico de arcillas caoliníticas para su utilización como puzolanas. Libro de las XI Jornadas Argentinas de Tratamiento de Minerales; 2012:115–120.Google Scholar
  22. 22.
    Balek V, Murat M. The emanation thermal analysis of kaolinite clay minerals. Thermochim Acta. 1996;282(283):385–97.CrossRefGoogle Scholar
  23. 23.
    Quennoz A, Scrivener KL. Hydration of C3A–gypsum systems. Cem Concr Res. 2012;42:1032–41.CrossRefGoogle Scholar
  24. 24.
    Taylor HFW. La química de los cementos, Enciclopedia de la industria química. Ed. URMO, Spain; 1967.Google Scholar
  25. 25.
    Antoni M, Roseen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42:1579–89.CrossRefGoogle Scholar
  26. 26.
    Gallucci E, Mathur P, Scrivener K. Microstructural development of early age hydration shells around cement grains. Cem Concr Res. 2010;40:4–13.CrossRefGoogle Scholar
  27. 27.
    Matschei T, Lothenbach B, Glasser FP. The AFm phase in Portland cement. Cem Concr Res. 2007;37:118–30.CrossRefGoogle Scholar
  28. 28.
    Rahhal V, Talero R. Calorimetry of Portland cement with silica fume, diatomite and quartz additions. Constr Build Mater. 2009;23:3367–74.CrossRefGoogle Scholar
  29. 29.
    Kuliffayová M, Krajči L´, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.CrossRefGoogle Scholar
  30. 30.
    Zhou Q, Glasser FP. Thermal stability and decomposition mechanisms of ettringite at <120 degrees C. Cem Concr Res. 2001;31:1333–9.CrossRefGoogle Scholar
  31. 31.
    Morsy MS. Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system. Ceram Silik. 2005;49:225–9.Google Scholar
  32. 32.
    Hidalgo A, García JL, Cruz Alonso M, Fernández L, Andrade C. Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. J Therm Anal Calorim. 2009;96:335–45.CrossRefGoogle Scholar
  33. 33.
    Frías M, Cabrera J. Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 ºC. Cem Concr Res. 2001;31:519–27.CrossRefGoogle Scholar
  34. 34.
    Frías Rojas M. Study of hydrated phases present in a MK-lime system cured at 60 °C and 60 months of reaction. Cem Concr Res. 2006;36:827–31.CrossRefGoogle Scholar
  35. 35.
    Meller N, Kyritsis K, Hall Ch. The hydrothermal decomposition of calcium monosulfoaluminate 14-hydrate to katoite hydrogarnet and beta-anhydrite: an in-situ synchrotron X-ray diffraction study. J Solid State Chem. 2009;182:2743–7.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Alejandra Tironi
    • 1
  • Monica A. Trezza
    • 1
  • Alberto N. Scian
    • 2
  • Edgardo F. Irassar
    • 1
  1. 1.Facultad de IngenieríaUniversidad Nacional del Centro de la Provincia de Buenos AiresOlavarríaArgentina
  2. 2.Centro de Tecnología de Recursos Minerales y CerámicaCONICET La Plata - UNLPGonnetArgentina

Personalised recommendations