Skip to main content
Log in

Thermal decomposition study of HAuCl4·3H2O and AgNO3 as precursors for plasmonic metal nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of HAuCl4·3H2O and AgNO3, as precursors for Au and Ag nanoparticles, respectively, was monitored by coupled TG–DTA with TG/EGA–FTIR and EGA–MS techniques in a flowing 80 %Ar + 20 %O2 and Ar atmospheres in the temperature range of 30–600 °C. The intermediate and final products of thermal decomposition were analysed by ex situ XRD and FTIR techniques. The thermal degradation of HAuCl4·3H2O starts immediately after melting at 75 °C and takes place in three steps in the temperature range of 75–320 °C with total mass loss of 49.4 and 49.7 % in artificial air and Ar atmospheres, respectively. EGA by MS and FTIR revealed a simultaneous release of H2O and HCl in the temperature range of 75–235 °C. EGA by MS revealed a release of Cl2 at around 225 °C and in the interval of 250–320 °C. According to the XRD analysis, the main solid product in the end of the first decomposition step at 190 °C is AuCl3; in the end of the second decomposition step at 240 °C is AuCl and the final product at 320 °C is Au. The thermal decomposition of AgNO3 takes place in a single step in the temperature range of 360–515 °C with a total mass loss of 39.0 and 37.8 % in flowing artificial air and Ar atmospheres, respectively. According to EGA–MS and EGA–FTIR the main evolved gases are NO2, NO and O2. The final product of the thermal decomposition at 600 °C is Ag irrespective of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feldheim DL, Foss CA. Metal nanoparticles: synthesis, characterization and applications. New York: Marcel Dekker; 2002.

    Google Scholar 

  2. Lue JT. A review of characterization and physical property studies of metallic nanoparticles. J Phys Chem Solids. 2001;62:1599–612.

    Article  CAS  Google Scholar 

  3. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.

    Article  CAS  Google Scholar 

  4. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  CAS  Google Scholar 

  5. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nature Mater. 2010;3:205–13.

    Article  Google Scholar 

  6. Hayashi S, Okamoto T. Plasmonics: visit the past to know the future. J Phys D Appl Phys. 2012;45:433001–25.

    Article  Google Scholar 

  7. El-Deab MS, Sotomura T, Ohsaka T. Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochim Acta. 2006;52:1792–8.

    Article  CAS  Google Scholar 

  8. Parisi J, Su L, Lei Y. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip. 2013;13:1501–8.

    Article  CAS  Google Scholar 

  9. Pedrueza E, Valdés JL, Chirvony V, Abargues R, Hernández-Saz J, Herrera M, Molina SI, Martínez-Pastor JP. Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with maxwell-garnett modeling. Adv Funct Mater. 2011;21:3502–7.

    Article  CAS  Google Scholar 

  10. Scandurra A, Indelli GF, Spartà NG, Galliano F, Ravesi S, Pignataro S. Low-temperature sintered conductive silver patterns obtained by inkjet printing for plastic electronics. Surf Interface Anal. 2010;42:1163–7.

    Article  CAS  Google Scholar 

  11. Oja Acik I, Dolgov L, Krunks M, Mere A, Mikli V, Pikker S, Loot A, Sildos I. Surface plasmon resonance caused by gold nanoparticles formed on sprayed TiO2 films. Thin Solid Films. 2014;553:144–7.

    Article  CAS  Google Scholar 

  12. Narayanan R, El-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B. 2005;109:12663–76.

    Article  CAS  Google Scholar 

  13. Ensign D, Young M, Douglas T. Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin. Inorg Chem. 2004;43:3441–6.

    Article  CAS  Google Scholar 

  14. Wang W, Cassar K, Sheard SJ, Dobson PJ, Bishop P, Parkin IP, Hurst S. Spray Deposition of Au/TiO2 Composite Thin Films Using Preformed Nanoparticles. Nanotechnology in Construction, vol. 3. New York: Springer Berlin Heidelberg; 2009. p. 395–402.

    Chapter  Google Scholar 

  15. de la Garza M, Hernández T, Colás R, Gómez I. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis. Mater Sci Eng B. 2010;174:9–12.

    Article  Google Scholar 

  16. Ramgir NS, Hwang YK, Jhung SH, Kim H-K, Hwang J-S, Mulla IS, Chang J-S. CO sensor derived from mesostructured Au-doped SnO2 thin film. Appl Surf Sci. 2006;252:4298–305.

    Article  CAS  Google Scholar 

  17. Tarwal NL, Patil PS. Enhanced photoelectrochemical performance of Ag–ZnO thin films synthesized by spray pyrolysis technique. Electrochim Acta. 2011;56:6510–6.

    Article  CAS  Google Scholar 

  18. Tarwal NL, Devan RS, Ma YR, Patil RS, Karanjkar MM, Patil PS. Spray deposited localized surface plasmonic Au–ZnO nanocomposites for solar cell application. Electrochim Acta. 2012;72:32–9.

    Article  CAS  Google Scholar 

  19. Jung DS, Bin Park S, Kang YC. Design of particles by spray pyrolysis and recent progress in its application. Korean J Chem Eng. 2010;27:1621–45.

    Article  CAS  Google Scholar 

  20. Montero MA, Gennero de Chialvo MR, Chialvo AC. Preparation of gold nanoparticles supported on glassy carbon by direct spray pyrolysis. J Mater Chem. 2009;19:3276–80.

    Article  CAS  Google Scholar 

  21. Sawada T, Ando S. Synthesis, characterization, and optical properties of metal-containing fluorinated polyimide films. Chem Mater. 1998;10:3368–78.

    Article  CAS  Google Scholar 

  22. Tsung C-K, Hong WB, Shi QH, Kou XS, Yeung MH, Wang JF, Stucky GD. Shape- and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers [supplemental material]. Adv Funct Mater. 2006;16:2225–30.

    Article  CAS  Google Scholar 

  23. Yang S-Y, Kim S-G. Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technol. 2004;146:185–92.

    Article  CAS  Google Scholar 

  24. L’vov BV, Ugolkov VL. Kinetics and mechanism of free-surface decomposition of solid and melted AgNO3 and Cd(NO3)2 analyzed thermogravimetrically by the third-law method. Thermochim Acta. 2004;424:7–13.

    Article  Google Scholar 

  25. Paulik F, Paulik J, Arnold M. Examination of the decomposition of AgNO3 by means of simultaneous EGA and TG method under conventional and quasi isothermal circumstances. Thermochim Acta. 1985;92:787–90.

    Article  CAS  Google Scholar 

  26. NIST Chemistry WebBook Standard Reference Database No 69, June 2005 Release, http://webbook.nist.gov/chemistry.

  27. Spectral Database for Organic Compounds, http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi. Accessed 26 March 2013.

  28. International Centre for Diffraction Data (ICDD), Powder Diffraction File (PDF), PDF-2 Release 2008.

  29. Madarász J, Bombicz P, Mátyás C, Réti F, Kiss G, Pokol G. Comparative evolved gas analytical and structural study on trans-diammine-bis(nitrito)-palladium(II) and platinum(II) by TG/DTA–MS, TG–FTIR, and single crystal X-ray diffraction. Thermochim Acta. 2009;490:51–9.

    Article  Google Scholar 

  30. Madarász J, Varga PP, Pokol G. Evolved gas analyses (TG-FTIR and TG/DTA-MS) of magnesium nitrate hexahydrate in air and nitrogen. J Anal Appl Pyrol. 2007;79:475–8.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Estonian Ministry of Education and Research (IUT19-4), the Estonian Science Foundation under grant ETF9081, and the European Union through the European Regional Development Fund projects: ‘Efficient plasmonic absorbers for solar cells’ (3.2.1101.12-0023) and TK114 ‘Mesosystems:Theory and Applications’ (3.2.0101.11-0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Oja Acik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, K., Oja Acik, I., Krunks, M. et al. Thermal decomposition study of HAuCl4·3H2O and AgNO3 as precursors for plasmonic metal nanoparticles. J Therm Anal Calorim 118, 1065–1072 (2014). https://doi.org/10.1007/s10973-014-3814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3814-3

Keywords

Navigation