Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 643–651 | Cite as

Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass

  • E. J. C. Davim
  • A. M. R. Senos
  • M. H. V. Fernandes


In this work, the crystallization process of a SiO2–3CaO·P2O5–MgO glass was studied by non-isothermal measurements using differential thermal analysis carried out at various heating rates. X-ray diffraction at room and high temperature was used to identify and follow the evolution of crystalline phases with temperature. The activation energy associated with glass transition, (E g), the activation energy for the crystallization of the primary crystalline phase (E c), and the Avrami exponent (n) were determined under non-isothermal conditions using different equations, namely from Kissinger, Matusita & Sakka, and Osawa. A complex crystallization process was observed with associated activation energies reflecting the change of behavior during in situ crystal precipitation. It was found that the crystallization process was affected by the fraction of crystallization, (x), giving rise to decreasing activation energy values, E c(x), with the increase of x. Values ranging from about 580 kJ mol−1 for the lower crystallized volume fraction to about 480 kJ mol−1 for volume fractions higher than 80 % were found. The Avrami exponents, calculated for the crystallization process at a constant heating rate of 10 °C min−1, increased with the crystallized fraction, from 1.6 to 2, indicating that the number of nucleant sites is temperature dependent and that crystals grow as near needle-like structures.


Crystallization Activation energy Avrami exponent Glass transition 



This work was financed by FEDER funds through the Operational Programme COMPETE and by FCT—Foundation for Science and Technology funds under the Grant SFRH/BD/48357/2008. We also acknowledge the program financing CICECO, Pest-C/CTM/LA0011/2011.


  1. 1.
    Dietrich E, Oudadesse H, Lucas-Girot A, Mami M. In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res A. 2009;88:1087–96.CrossRefGoogle Scholar
  2. 2.
    Ma J, Chen CZ, Wang DG, Hu JH. Synthesis, characterization and in vitro bioactivity of magnesium-doped sol–gel glass and glass-ceramics. Ceram Int. 2011;37:1637–44.CrossRefGoogle Scholar
  3. 3.
    Radev L, Hristov V, Michailova I, Fernandes HMV, Salvado MIM. In vitro bioactivity of biphasic calcium phosphate silicate glass-ceramic in CaO–SiO2–P2O5 system. Process Appl Ceram. 2010;4:15–24.CrossRefGoogle Scholar
  4. 4.
    Renno ACM, Bossini PS, Crovace MC, Rodrigues ACM, Zanotto ED, Parizotto NA. Characterization and in vivo biological performance of biosilicate. Biomed Res Int. 2013;2013:141427.CrossRefGoogle Scholar
  5. 5.
    Sitarz M, Bulat K, Szumera M. Aluminium influence on the crystallization and bioactivity of silico-phosphate glasses from NaCaPO4–SiO2 system. J Non Cryst Solids. 2010;356:224–31.CrossRefGoogle Scholar
  6. 6.
    Szumera M, Wacławska I. Effect of molybdenum addition on the thermal properties of silicate–phosphate glasses. J Therm Anal Calorim. 2012;109:649–55.CrossRefGoogle Scholar
  7. 7.
    Sitarz M, Bulat K, Wajda A, Szumera M. Direct crystallization of silicate–phosphate glasses of NaCaPO4–SiO2 system. J Therm Anal Calorim. 2013;113:1363–8.CrossRefGoogle Scholar
  8. 8.
    Szumera M, Wacławska I. Spectroscopic and thermal studies of silicate–phosphate glass. J Therm Anal Calorim. 2007;88:151–6.CrossRefGoogle Scholar
  9. 9.
    Szumera M, Wacławska I, Olejniczak Z. Influence of B2O3 on the structure and crystallization of soil active glasses. J Therm Anal Calorim. 2009;99:879–86.CrossRefGoogle Scholar
  10. 10.
    Sitarz M, Bulat K, Szumera M. Influence of modifiers and glass-forming ions on the crystallization of glasses of the NaCaPO4–SiO2 system. J Therm Anal Calorim. 2012;109:577–84.CrossRefGoogle Scholar
  11. 11.
    Arstila H, Vedel E, Hupa L, Hupa M. Factors affecting crystallization of bioactive glasses. J Eur Ceram Soc. 2007;27:1543–6.CrossRefGoogle Scholar
  12. 12.
    James PF, Shi W. Crystal nucleation kinetics in a 40CaO–40P2O5–20B2O3 glass—a study of heterogeneously catalysed crystallization. J Mater Sci. 1993;28:2260–6.CrossRefGoogle Scholar
  13. 13.
    Reaney IM, James PF, Lee WE. Effect of nucleating agents on the crystallization of calcium phosphate glasses. J Am Ceram Soc. 1996;79:1934–44.CrossRefGoogle Scholar
  14. 14.
    Clifford A, Hill R, Rafferty A, Mooney P, Wood D, Samuneva B, et al. The influence of calcium to phosphate ratio on the nucleation and crystallization of apatite glass-ceramics. J Mater Sci Mater Med. 2001;12:461–9.CrossRefGoogle Scholar
  15. 15.
    Davim EJC, Fernandes MHV, Senos AMR. Preparation of porous glass scaffolds by salt sintering technique. 2008;587–588:52–6.Google Scholar
  16. 16.
    Lopes P, Corbellini M, Ferreira BL, Almeida N, Fredel M, Fernandes MH, et al. New PMMA-co-EHA glass-filled composites for biomedical applications: mechanical properties and bioactivity. Acta Biomater. 2009;5:356–62.CrossRefGoogle Scholar
  17. 17.
    Daguano JKMF, Strecker K, Ziemath EC, Rogero SO, Fernandes MHV, Santos C. Effect of partial crystallization on the mechanical properties and cytotoxicity of bioactive glass from the 3CaO·P(2)O(5)–SiO(2)–MgO system. J Mech Behav Biomed Mater. 2012;14:78–88.CrossRefGoogle Scholar
  18. 18.
    Almeida NAF, Fernandes MHFV. Effect of glass ceramic crystallinity on the formation of simulated apatite layers. Mater Sci Forum. 2006;514–516:1039–43.CrossRefGoogle Scholar
  19. 19.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1934;1956(57):217–21.Google Scholar
  20. 20.
    Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.CrossRefGoogle Scholar
  21. 21.
    Ozawa T. Applicability of friedman plot. J Therm Anal. 1986;31:547–51.CrossRefGoogle Scholar
  22. 22.
    Fatmi M, Ghebouli B, Ghebouli MA, Chihi T, Abdul Hafiz M. The kinetics of precipitation in Al-2.4 wt% Cu alloy by Kissinger, Ozawa, Bosswel and Matusita methods. Physica B. 2011;406:2277–80.CrossRefGoogle Scholar
  23. 23.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRefGoogle Scholar
  24. 24.
    Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of glass-transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.CrossRefGoogle Scholar
  25. 25.
    Marotta A, Buri A, Branda F. Surface and bulk crystallization in non-isotherml devitrification of glasses. Thermochim Acta. 1980;40:397–403.CrossRefGoogle Scholar
  26. 26.
    Majhi K, Varma KBR. Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci. 2008;44:385–91.CrossRefGoogle Scholar
  27. 27.
    Majhi K, Varma KBR. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Therm Anal Calorim. 2009;98:731–6.CrossRefGoogle Scholar
  28. 28.
    Matusita K, Sakka S, Matsui Y. Determination of activation-energy for crystal-growth by differential thermal-analysis. J Mater Sci. 1975;10:961–6.CrossRefGoogle Scholar
  29. 29.
    Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation-energy for crystal-growth in amorphous materials. J Mater Sci. 1984;19:291–6.CrossRefGoogle Scholar
  30. 30.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  31. 31.
    Erol M, Küçükbayrak S, Ersoy-Meriçboyu A. The application of differential thermal analysis to the study of isothermal and non-isothermal crystallization kinetics of coal fly ash based glasses. J Non Cryst Solids. 2009;355:569–76.CrossRefGoogle Scholar
  32. 32.
    Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O–P2O5) glass system. J Physics-Condensed Matter. 2009;21:115102.CrossRefGoogle Scholar
  33. 33.
    Imran MMA, Saxena NS, Bhandari D, Husain M. Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100–xInx (x = 2, 4 and 10) semiconducting glasses. Phys Status Solidi A. 2000;181:357–68.CrossRefGoogle Scholar
  34. 34.
    Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li(2)O–P(2)O(5)) glass system. J Phys Condens Matter. 2009;21:115102.CrossRefGoogle Scholar
  35. 35.
    Pǎcurariu C, Lazǎu RI, Lazǎu I, Tiţa D. Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim. 2007;88:647–52.CrossRefGoogle Scholar
  36. 36.
    Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphous Finemet alloy. J Non Cryst Solids. 2005;351:3320–4.CrossRefGoogle Scholar
  37. 37.
    Sun F, Gloriant T. Primary crystallization process of amorphous Al88Ni6Sm6 alloy investigated by differential scanning calorimetry and by electrical resistivity. J Alloys Compd. 2009;477:133–8.CrossRefGoogle Scholar
  38. 38.
    Massera J, Fagerlund S, Hupa L, Hupa M. Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. J Am Ceram Soc. 2012;95:607–13.CrossRefGoogle Scholar
  39. 39.
    Likitvanichkul S, Lacourse WC. Apatite–wollastonite glass-ceramics part I crystallization kinetics by differential thermal analysis. J Mater Sci. 1998;33:5901–4.CrossRefGoogle Scholar
  40. 40.
    Yu B, Liang K, Hu A, Gu S. Influence of different TiO2 content on crystallization of CaO–MgO–P2O5–SiO2 system glasses. Mater Lett. 2002;56:539–42.CrossRefGoogle Scholar
  41. 41.
    Oliveira AL, Oliveira JM, Correia RN, Fernandes MHV, Frade JR. Crystallization of whitlockite from a glass in the system CaOP2O5SiO2MgO. J Am Ceram Soc. 1998;81:3270–6.CrossRefGoogle Scholar
  42. 42.
    Nascimento MLF, Ferreira EB, Zanotto ED. Kinetics and mechanisms of crystal growth and diffusion in a glass-forming liquid. J Chem Phys. 2004;121:8924–8.CrossRefGoogle Scholar
  43. 43.
    Fokin VM, Nascimento MLF, Zanotto ED. Correlation between maximum crystal growth rate and glass transition temperature of silicate glasses. J Non Cryst Solids. 2005;351:789–94.CrossRefGoogle Scholar
  44. 44.
    Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, et al. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55:3305–13.CrossRefGoogle Scholar
  45. 45.
    Clupper DC, Hench LL. Crystallization kinetics of tape cast bioactive glass 45S5. J Non Cryst Solids. 2003;318:43–8.CrossRefGoogle Scholar
  46. 46.
    Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139.CrossRefGoogle Scholar
  47. 47.
    Navarro JMF. El vidrio: constitución, fabricación, propiedades. 2nd ed. Madrid: Consejo Superior de Investigaciones Científicas, Sociedad Española de Cerámica y Vidrio; 1991.Google Scholar
  48. 48.
    Sung YM. Nonisothermal phase formation kinetics in sol–gel-derived strontium bismuth tantalate. J Mater Res. 2001;16:2039–44.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • E. J. C. Davim
    • 1
  • A. M. R. Senos
    • 1
  • M. H. V. Fernandes
    • 1
  1. 1.Department Materials and Ceramic Engineering, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations