Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 595–602 | Cite as

Three–step method to determine the eutectic composition of binary and ternary mixtures

Tested on two novel eutectic phase change materials based on salt hydrates
  • Henri SchmitEmail author
  • Christoph Rathgeber
  • Peter Hennemann
  • Stefan Hiebler


A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9 \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\)) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\)). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\). Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\)) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\)) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\).


Phase change material Eutectic Temperature–composition diagram Salt hydrate DSC T-History method 



This work is part of the project EnFoVerM and was supported by the German Federal Ministry of Economics and Technology under the project code 0327851D. The responsibility for the content of this publication is with the authors.


  1. 1.
    Mehling H, Cabeza LF. Heat and cold storage with PCM. Berlin: Springer; 2008.Google Scholar
  2. 2.
    Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Application of pcm thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111:279–88.CrossRefGoogle Scholar
  3. 3.
    Zhai XQ, Wang XL, Wang T, Wang RZ. A review on phase change cold storage in air conditioning system: materials and applications. Renew Sust Energy Rev. 2013;22:108–20.CrossRefGoogle Scholar
  4. 4.
    Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI. Materials used as pcm in thermal energy storage in buildings: a review. Renew Sust Energy Rev. 2011;15:1675–95.CrossRefGoogle Scholar
  5. 5.
    Farid MM, Khudhair AM, Siddique AKR, Said A-H. A review on phase energy storage: materials and applications. Eenergy Convers Manage. 2004;45(15):97–1615.Google Scholar
  6. 6.
    Nagano K, Mochida T, Takeda S, Domnski R, Rebow M. Thermal characteristics of manganese (ii) nitrate hexahydrate as a phase change material for cooling systems. Appl Therm Eng. 2003;23:229–41.CrossRefGoogle Scholar
  7. 7.
    Lane GA. Solar heat storage: latent heat material, vol. II. Boca Raton: CRC Press, Inc.; 1986.Google Scholar
  8. 8.
    Benrath A, Hartung P, Wilden M. Über die anwendung der auftau-schmelzmethode auf anorganische binäre systeme. J Prakt Chem. 1935;143:298–304.CrossRefGoogle Scholar
  9. 9.
    Marcus Y, Minevich A, Ben-Dor L. Solid–liquid phase diagram of binary salt hydrate mixtures involving magnesium nitrate and acetate, magnesium and aluminum nitrate, ammonium alum and sulfate, and ammonium alum and aluminum sulfate. Thermochim Acta. 2004;412:163–70.CrossRefGoogle Scholar
  10. 10.
    Marcus Y, Minevich A, Ben-Dor L. Solid–liquid phase equilibria of binary salt hydrate mixtures involving ammonium alum. J Therm Anal Calorim. 2005;81:51–5.CrossRefGoogle Scholar
  11. 11.
    Benessam S, Khimeche K, Djellouli F, Benziane M, Dahmani A. Phase diagram of ibuprofen with fatty acids. J Therm Anal Calorim. 2013;112:317–20.CrossRefGoogle Scholar
  12. 12.
    Rycerz L. Practical remarks concerning phase diagram determination on the basis of differential scanning calorimetry measurements. J Therm Anal Calorim. 2013;113:231–8.CrossRefGoogle Scholar
  13. 13.
    Günther E, Hiebler S, Mehling H, Redlich R. Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int J Thermophys. 2009;30:1257–69.CrossRefGoogle Scholar
  14. 14.
    Kousksou T, Jamil A, Zeraouli Y, Dumas J-P. Equilibrium system liquidus temperatures of binary mixtures from differential scanning calorimetry. Chem Eng Sci. 2007;62:6516–23.CrossRefGoogle Scholar
  15. 15.
    Ewing WW, McGovern JJ, Mathews GE. The temperature–composition relations of the binary system zinc nitrate–water. J Am Chem Soc. 1933;55:4827–30.CrossRefGoogle Scholar
  16. 16.
    Ibnlfassi A, Kaddami D, El Kacemi K. Systme ternaire: \(\text{H}_{2}\text{O}-\text{Zn}(\text{NO}_3)_2-\text{NH}_4\text{NO}_3\) i. les isothermes \(-\)25 et \(-\)20\(\rm ^\circ \)C. J Therm Anal Calorim. 2003;74:341–7.CrossRefGoogle Scholar
  17. 17.
    Purdon FF, Slater VW. Aqueous solution and the phase diagram. London: Edward Arnold & CO; 1946.Google Scholar
  18. 18.
    Dellien I. A dsc study of the phase transformations of ammonium nitrate. Thermochim Acta. 1982;55:181–91.CrossRefGoogle Scholar
  19. 19.
    24 LEA, SHC Task 42/ECES Annex. Compact thermal energy storage.
  20. 20.
    Lázaro A, Günther E, Mehling H, Hiebler S, Marín JM, Zalba B. Verification of a t-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol. 2006;17:2168–74.CrossRefGoogle Scholar
  21. 21.
    Rathgeber C, Schmit H, Hennemann P, Hiebler S. Calibration of a t-history calorimeter to measure enthalpy curves of phase change materials in the temperature range from 40 to 200 ºC. Meas Sci Technol. 2014;25:035011.CrossRefGoogle Scholar
  22. 22.
    Abhat A. Low temperature latent heat storage: I: heat storage materials; II: heat transfer considerations. Ispra: Ispra Courses; 1981.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Henri Schmit
    • 1
    Email author
  • Christoph Rathgeber
    • 1
  • Peter Hennemann
    • 1
  • Stefan Hiebler
    • 1
  1. 1.Bavarian Center for Applied Energy Research (ZAE Bayern)GarchingGermany

Personalised recommendations