Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 2, pp 1021–1031 | Cite as

Pulse annealing electron paramagnetic resonance with probing transition ions

Application to thermal formation and growth of nanoZnO
  • S. V. Nistor
  • M. Stefan
  • D. Ghica
Article

Abstract

The analysis of the sequence of electron paramagnetic resonance (EPR) spectra of trace amounts of substitutional probing paramagnetic ions incorporated in (nano)crystalline samples submitted to isothermal and isochronal pulse annealing treatments can offer a wealth of information on the thermally induced compositional and structural changes of the host material. The potential of this new thermal analysis method is illustrated here with results of such investigations on the thermal decomposition of crystalline zinc hydroxide (Zn(OH)2) and anhydrous zinc carbonate basic (Zn5(CO3)2(OH)6) precursors containing trace amounts of substitutional Mn2+ probing ions into nanostructured zinc oxide-ZnO. The quantitative analysis of the sequence of isochronal pulse annealing EPR spectra could provide, besides the thermal decomposition curves of the two precursors, additional information about the structure of the resulting nanostructured ZnO, some of it hard to get by standard structural diffraction techniques. The analysis of both isochronal and isothermal pulse annealing EPR data was further used to investigate the crystallization mechanism of the initially formed nanostructured disordered ZnO and to quantitatively describe the further growth of the resulting ZnO nanocrystals with the increasing annealing temperature and duration.

Keywords

Electron paramagnetic resonance Thermal analysis Pulse annealing Transition metal ions Mn2+ 

Notes

Acknowledgements

This work has been supported by Unitatea Executiva pentru Finantarea Invatamantului Superior a Cercetarii, Dezvoltarii si Inovarii, Project PNII-ID-74/2011. We would like to thank Leona C. Nistor and Ioana Vlaicu for contributions to the work contained within the manuscript. This article was written through equal contributions of all authors.

References

  1. 1.
    Speyer RF. Thermal analysis of materials. New York: Marcel Dekker; 1994.Google Scholar
  2. 2.
    Brown ME. Introduction to thermal analysis; techniques and applications. 2nd ed. AH Dordrecht: Kluwer Academic Publishers; 2001.Google Scholar
  3. 3.
    L’vov BV. Thermal decomposition of solids and melts—new thermochemical approach to the mechanism, kinetics and methodology. Berlin: Springer; 2007.CrossRefGoogle Scholar
  4. 4.
    Gabbott P. Principles and applications of thermal analysis. Oxford: Blackwell Publishing Ltd; 2008.CrossRefGoogle Scholar
  5. 5.
    Galwey AK. Theory of solid-state thermal decomposition reactions. J Therm Anal Calorim. 2012;109:1625–35.CrossRefGoogle Scholar
  6. 6.
    Orton JW. Electron paramagnetic resonance—an introduction to transition group ions in crystals. London: Ilffe Books Ltd; 1968.Google Scholar
  7. 7.
    Abragam A, Bleaney B. Electron paramagnetic resonance of transition ions. Oxford: Clarendon Press; 1970.Google Scholar
  8. 8.
    Pilbrow JR. Transition ion electron paramagnetic resonance. Oxford: Clarendon Press; 1990.Google Scholar
  9. 9.
    Beaulac R, Ochsenbein ST, Gamelin DR. Colloidal transition-metal-doped quantum dots. In: Klimov VI, editor. Nanocrystal quantum dots. Boca Raton: CRC Press; 2010. p. 397–453.CrossRefGoogle Scholar
  10. 10.
    Stefan M, Nistor SV. EPR probing of low temperature structural phases of Rb2 ZnCl4 with Tl0 and Tl2+ centers. Phys Rev B. 2004;69:104107 (11 pp) and references cited therein.CrossRefGoogle Scholar
  11. 11.
    Ghica D, Nistor SV, Nistor LC, Stefan M, Mateescu CD. Structural phase transformations in annealed cubic ZnS nanocrystals. J Nanopart Res. 2011;13:4325–35 and references cited therein.CrossRefGoogle Scholar
  12. 12.
    Heyndricks I, Goovaerts E, Nistor SV, Schoemaker D. Site-switched Tl0 atoms in Tl+ doped NaCl and KCl. Phys Rev B. 1986;33:1559–66.CrossRefGoogle Scholar
  13. 13.
    Nistor SV, Stefan M, Schoemaker D. Off-center displacement of Fe+ ions in irradiated SrCl2:Fe crystals grown in chlorine. Phys Status Solidi B. 1999;214:229–36.CrossRefGoogle Scholar
  14. 14.
    Ghica D, Nistor SV. High thermal stability of the off-center paramagnetic Fe2+ ions in chlorinated SrCl2:Fe2+ crystals. Rom Rep Phys. 2013;65:825–31 and references cited therein.Google Scholar
  15. 15.
    Nistor SV, Goovaerts E, Schoemaker D. Trapped hole Fe3+ centers in layered CdCl2:Fe crystals. J Phys Condens Matter. 1994;6:2619–30.CrossRefGoogle Scholar
  16. 16.
    Nistor SV, Goovaerts E, Schoemaker D. Temperature variation of the ESR parameters for the STEL center in PbCl2. Phys Rev B. 1995;52:12–5.CrossRefGoogle Scholar
  17. 17.
    Stefan M, Nistor SV, Goovaerts E, Nikl M, Bohachek P. Temperature dependence of the paramagnetic resonance spectra of Mn2+ impurity ions in PbWO4 single crystals. J Phys Condens Matter. 2005;17:719–28.CrossRefGoogle Scholar
  18. 18.
    Nistor SV, Ghiordanescu V, Voda M. ESR of doped CdCl2 single crystals. Phys Status Solidi B. 1976;78:K31–3.CrossRefGoogle Scholar
  19. 19.
    Stesmans A, Afanasiev VV. Thermally induced interface degradation in (100) and (111) Si/SiO2 analyzed by electron spin resonance. J Vac Sci Technol B. 1998;13:3108–11.CrossRefGoogle Scholar
  20. 20.
    Nistor SV, Stefan M, Schoemaker D, Dinca G. EPR observation of first point defects in cubic boron nitride crystalline powders. Solid State Commun. 2000;115:39–44.CrossRefGoogle Scholar
  21. 21.
    Lamonier J, Kulycova S, Zhilinskaya E, Aboukals A. Thermal analysis and epr studies of carbon black oxidation in the presence of cooper loaded Y2O3–CeO2–ZrO2 catalyst. J Therm Anal Calorim. 2004;75:857–65.CrossRefGoogle Scholar
  22. 22.
    Labanowska M, Weselucha-Birczynska A, Kurdziel M, Puch P. Thermal effects on the cereal starches. EPR and raman spectroscopy studies. Carbohydr Polym. 2012;92:842–8.CrossRefGoogle Scholar
  23. 23.
    Matta J, Courcot D, Abi-Aad E, Abaukais A. Thermal analysis, EPR and XPS studies of vanadyl (IV) oxalate behavior on the ceria surface. J Therm Anal Calorim. 2001;66:717–27.CrossRefGoogle Scholar
  24. 24.
    Nistor SV, Nistor LC, Stefan M, Ghica D, Aldica Gh, Barascu JN. Crystallization of disordered nanosized ZnO formed by thermal decomposition of nanocrystalline hydrozincite. Cryst Growth Des. 2011;11:5030–8.CrossRefGoogle Scholar
  25. 25.
    Stefan M, Nistor SV, Ghica D. Correlation of lattice disorder with crystallite size and the growth kinetics of Mn2+ doped ZnO nanocrystals probed by electron paramagnetic resonance. Cryst Growth Des. 2013;13:1350–9.CrossRefGoogle Scholar
  26. 26.
    Nistor SV, Ghica D, Stefan M, Vlaicu I, Barascu NJ, Bartha C. Magnetic defects in crystalline Zn(OH)2 and nanocrystalline ZnO resulting from its thermal decomposition. J Alloys Compd. 2013;48:222–7.CrossRefGoogle Scholar
  27. 27.
    Wang ZL. Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter. 2004;16:R929–58.CrossRefGoogle Scholar
  28. 28.
    Schmidt-Mende L, MacManus-Driscoll JL. ZnO- nanostructures, defects and devices. Mater Today. 2007;10:40–8.CrossRefGoogle Scholar
  29. 29.
    Morkoc H, Ozgur U. Zinc oxide: fundamentals, materials and device technology. Weinheim: WILEY-VCH; 2009.CrossRefGoogle Scholar
  30. 30.
    Klingshirn CF, Waag A, Hoffman A, Geurts J. Zinc oxide. Fundamental properties towards novel applications. Berlin: Springer Series in Materials Science, vol. 190, Springer; 2010.Google Scholar
  31. 31.
    Kanari N, Mishra D, Gaballah I, Dupre B. Thermal decomposition of zinc carbonate hydroxide. Thermochim Acta. 2004;410:93–100.CrossRefGoogle Scholar
  32. 32.
    Vagvoelgyi V, Halws M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.CrossRefGoogle Scholar
  33. 33.
    Li YS, Li G, Wang SX, Gao H, Tan ZC. Preparation and characterization of nano-ZnO flakes prepared by reactive ion exchange method. J Therm Anal Calorim. 2009;95:671–4.CrossRefGoogle Scholar
  34. 34.
    Mickovic Z, Alexander DTL, Sienkiewicz A, Mionic M, Forro L, Magrez A. Synthesis of nanosized ZnO by low temperature decomposition of hydrozincite precursors. Cryst Growth Des. 2010;10:4437–45.CrossRefGoogle Scholar
  35. 35.
    Zhao X, Zhang F, Xu S, Evans DG, Duan X. From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and uv-blocking properties of the product. Chem Mater. 2010;22:3933–42.CrossRefGoogle Scholar
  36. 36.
    Moezzi A, McDonagh A, Dowd A, Cortie M. Zinc hydroxyacetate and its transformation to nanocrystalline zinc oxide. Inorg Chem. 2012;52:95–102.CrossRefGoogle Scholar
  37. 37.
    Hutera B, Kmita A, Olejnik E, Tokarski T. Synthesis of ZnO nanoparticles by thermal decomposition of basic zinc carbonate. Archiv Metall Mater. 2013;58:489–91.Google Scholar
  38. 38.
    Hu C, Mi J, Shang S, Shangguan J. The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dihydrate. J Therm Anal Calorim. 2014;115:1119–25.CrossRefGoogle Scholar
  39. 39.
    Weil JA, Bolton J. Electron paramagnetic resonance. Elementary theory and practical applications. 2nd ed. Hoboken: Wiley; 2007.Google Scholar
  40. 40.
    Misra SK, editor. Multifrequency electron paramagnetic resonance –theory and applications. Weinheim: Wiley; 2011.Google Scholar
  41. 41.
    Rudowicz C, Chung CY. The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements. J Phys Condens Matter. 2004;16:5825–47.CrossRefGoogle Scholar
  42. 42.
    Nistor SV, Stefan M. In-depth investigation of Mn2+ ions EPR spectra in ZnS single crystals with pure cubic structure. J Phys Condens Matter. 2009;21:145408 (7 pp).CrossRefGoogle Scholar
  43. 43.
    Stefan M, Nistor SV, Barascu JN. Accurate determination of the spin Hamiltonian parameters for Mn2+ ions in cubic ZnS nanocrystals by multifrequency EPR spectra analysis. J Magn Reson. 2011;210:200–9.CrossRefGoogle Scholar
  44. 44.
    Diaconu M, Schmidt H, Poeppl A, Boettcher R, Hoentsch J, Klunker A, Spemann D, Hochmuth H, Lorentz M, Grundmann M. Electron paramagnetic resonance of Zn1-x MnxO thin films and single crystals. Phys Rev B. 2005;72:085214 (6 pp).CrossRefGoogle Scholar
  45. 45.
    Furduyana JK, Kossut J. Diluted magnetic semiconductors. In: Willardson RK, Ber AC, editors. Semiconductors and semimetals. New York: Academic Press; 1988.Google Scholar
  46. 46.
    Li Z, Shen X, Feng X, Wang P, Wu Z. Non-isothermal kinetics studies of the thermal decomposition of zinc hydroxide carbonate. Thermochim Acta. 2005;438:102–6.CrossRefGoogle Scholar
  47. 47.
    Nistor LC, Nistor SV, Ghica D. Low temperature TEM investigation of electron beam induced decomposition of nanocrystalline hydrozincite. Rom Rep Phys. 2013;65:186–92.Google Scholar
  48. 48.
    Avrami M. Granulation, phase change and microstructure—kinetics of phase change III. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  49. 49.
    Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–62.Google Scholar
  50. 50.
    Kolmogorov AN. On the statistical theory for the recrystallization of metals. Bull Acad Sci URSS (Cl Sci Math Nat). 1937;3:355–60.Google Scholar
  51. 51.
    Naglieri V, Joly-Pottuz L, Chevalier J, Lombardi M, Montanaro L. Follow-up of zirconia crystallization on the surface modified alumina powder. J Eur Ceram Soc. 2010;30:3377–87.CrossRefGoogle Scholar
  52. 52.
    Schmidt U, Eisenschmidt C, Vieweger T, Zahra CY, Zahra AM. Crystallization of amorphous AlDy- and AlDyCo-alloys. J Non-Cryst Solids. 2000;271:29–44.CrossRefGoogle Scholar
  53. 53.
    Nistor SV, Ghica D, Stefan M, Nistor LC. Sequential thermal decomposition of the shell of cubic ZnS/Zn(OH)2 core-shell quantum dots observed with Mn2+ probing ions. J Phys Chem C. 2013;117:2217–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.National Institute of Materials PhysicsMagureleRomania

Personalised recommendations