Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 1, pp 387–392 | Cite as

Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils

  • M. J. Silva
  • A. O. Sanches
  • E. S. Medeiros
  • L. H. C. Mattoso
  • C. M. McMahan
  • J. A. Malmonge
Article

Abstract

Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 °C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young’s modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.

Keywords

Cellulose nanofibrils Cotton cellulose Polyaniline Natural rubber 

Notes

Acknowledgements

The authors acknowledge the Brazilian agencies CNPq, CAPES, and FAPESP for financial support.

References

  1. 1.
    Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, Souza SF, Kottaisamy M. Structure, morphology and thermal characteristics of banana nanofibers obtained by steam explosion. Bioresource Technol. 2011;102:1988–97.CrossRefGoogle Scholar
  2. 2.
    Morán JI, Alvarez VA, Cyras VP, Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15:149–59.CrossRefGoogle Scholar
  3. 3.
    Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose. 2011;18:443–50.CrossRefGoogle Scholar
  4. 4.
    Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, GlennG Orts WJ, Imam SH. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym. 2010;81:83–92.CrossRefGoogle Scholar
  5. 5.
    Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.CrossRefGoogle Scholar
  6. 6.
    Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 2010;17:459–94.CrossRefGoogle Scholar
  7. 7.
    Roman M, Winte WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004;5:1671–7.CrossRefGoogle Scholar
  8. 8.
    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom LH, Hughes HM, Hill C, Rials TG, Wild PM. Review current international research into cellulosic fibers and composites. J Mater Sci. 2001;36:2107–31.CrossRefGoogle Scholar
  9. 9.
    Samir MASA, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6:612–26.CrossRefGoogle Scholar
  10. 10.
    Mattoso LHC, Medeiros ES, Baker DA, Avloni J, Wood DF, Orts WJ. Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol. 2008;8:1–6.CrossRefGoogle Scholar
  11. 11.
    Hu W, Chen S, Yang Z, Liu L, Wang H. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B. 2011;115:8453–7.CrossRefGoogle Scholar
  12. 12.
    Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synthetic Met. 2011;161:106–11.CrossRefGoogle Scholar
  13. 13.
    Visakh PM, Thomas S, Oksman K, Mathew AP. Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos A. 2012;43:735–41.CrossRefGoogle Scholar
  14. 14.
    Wang Y, Tian H, Zhang L. Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohyd Polym. 2010;80:665–71.CrossRefGoogle Scholar
  15. 15.
    Martins MA, Pessoa JDC, Gonçalves PS, Souza FI, Mattos LHC. Thermal and mechanical properties of the açaí fiber/natural rubber composites. J Mater Sci. 2008;43:6531–8.CrossRefGoogle Scholar
  16. 16.
    Siqueira G, Tapin-Lingua S, Bras J, Perez DS, Dufresne A. Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose. 2011;18:57–65.CrossRefGoogle Scholar
  17. 17.
    Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A. Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crop Prod. 2010;32:486–90.CrossRefGoogle Scholar
  18. 18.
    Bendahou A, Kaddami H, Dufresne A. Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J. 2010;46:609–20.CrossRefGoogle Scholar
  19. 19.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A. Mechanical, barrier, and biodegradability properties whiskers reinforced natural rubber nanocomposites. Ind Crop Prod. 2010;32:627–33.CrossRefGoogle Scholar
  20. 20.
    Micusık M, Omastova M, Prokes J, Krupa I. Mechanical and electrical properties of composites based on thermoplastic matrices and conductive cellulose fibers. J Appl Polym Sci. 2006;101:133–42.CrossRefGoogle Scholar
  21. 21.
    Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LHC, Mosiewicki MA, Marcoviche NE, Arangurene MI. Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int. 2011;60:743–50.CrossRefGoogle Scholar
  22. 22.
    Araujo JR, Adamo CB, De Paoli MA. Conductive composites of polyamide-6 with polyaniline coated vegetal fiber. Chem Eng J. 2011;174:425–31.CrossRefGoogle Scholar
  23. 23.
    Malmonge JA, Camilo EC, Moreno RMB, Mattoso LHC, McMahan CM. Comparative study on the technological properties of latex and natural rubber from Hancornia speciosa Gomes and Hevea brasiliensis. J Appl Polym Sci. 2009;111:2986–91.CrossRefGoogle Scholar
  24. 24.
    Medeiros ES, Mattoso LHC, Filho RB, Wood DF, Orts WJ. Self-assembled films of cellulose nanofibrils and poly(o-ethoxyaniline). Colloid Polym Sci. 2008;286:1265–72.CrossRefGoogle Scholar
  25. 25.
    Dong XM, Revol J-F, Gray DG. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose. 1998;5:19–32.CrossRefGoogle Scholar
  26. 26.
    Martins MA, Teixeira EM, Corrêa AC, Ferreira M, Mattoso LHC. Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci. 2011;46:7858–64.CrossRefGoogle Scholar
  27. 27.
    Julien S, Chornet E, Overend RP. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. J Anal Appl Pyrol. 1993;21:25–43.CrossRefGoogle Scholar
  28. 28.
    Traore MK, Stevenson WTK, McCormick BJ, Dorey RC, Wen S, Meyers D. Thermal analysis of polyaniline Part I Thermal degradation of HCl-doped emeraldine base. Synthetic Met. 1991;40:137–53.CrossRefGoogle Scholar
  29. 29.
    Rannon P, Nechtschein M. Aging studies on polyaniline: conductivity and thermal stability. Synthetic Met. 1997;84:755–6.CrossRefGoogle Scholar
  30. 30.
    Chen E-C, Lin Y-W, Wu T-M. Fabrication, morphology and thermal degradation behaviors of conductive polyaniline coated monodispersed polystyrene particles. Polymer Degrad Stabil. 2009;94:550–7.CrossRefGoogle Scholar
  31. 31.
    Oliveira LCS, Rosa DP, Arruda EJ, Costa RB, Gonçalves PS, Delben A. Comparative studies of latex obtained of rubber tree clones (Hevea brasiliensis) – series IAC 328 – Votuporanga – SP. J Therm Anal Cal. 2004;75:495–500.CrossRefGoogle Scholar
  32. 32.
    Medeiros ES, Galiani PD, Moreno RMB, Mattoso LHC, Malmonge JA. A comparative study of the non-isothermal degradation of natural rubber from Mangabeira (Hancornia speciosa Gomes) and Seringueira (Hevea brasiliensis). J Therm Anal Calorim. 2010;100:1045–50.CrossRefGoogle Scholar
  33. 33.
    Rodriguez NL, Thielemans W, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose. 2006;13:261–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • M. J. Silva
    • 1
  • A. O. Sanches
    • 1
  • E. S. Medeiros
    • 2
  • L. H. C. Mattoso
    • 3
  • C. M. McMahan
    • 4
  • J. A. Malmonge
    • 1
  1. 1.Departamento de Física e Química, Faculdade de EngenhariaUNESP – Univ. Estadual PaulistaIlha SolteiraBrazil
  2. 2.Departamento de Engenharia de MateriaisUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação (CNPDIA)São CarlosBrazil
  4. 4.Western Regional Research CenterUSDA-ARSAlbanyUSA

Personalised recommendations