Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 1, pp 173–187 | Cite as

Application of a novel type of adiabatic scanning calorimeter for high-resolution thermal data near the melting point of gallium

  • Jan Leys
  • Patricia Losada-Pérez
  • Christ Glorieux
  • Jan Thoen


A novel type of adiabatic scanning calorimeter (ASC) based on Peltier elements (PEs) is used to obtain high-resolution enthalpy and heat capacity data on the melting transition of gallium. The accuracy of the specific heat capacity and specific enthalpy is about 2 %, for a sub-mK temperature resolution. The simultaneously determined equilibrium specific heat capacity and specific enthalpy are used to determine the heat of fusion and the purity. In addition, the use of the PE-based ASC as a classical heat step calorimeter and as a constant rate (DSC-type) calorimeter is discussed. A comparison of the ASC results with literature data and DSC data shows the advantages of ASC for the study of phase transitions.


Adiabatic scanning calorimetry Heat capacity Enthalpy Melting transition Gallium Peltier element 



The authors thank Jeroen Sniekers (Department of Chemistry, KU Leuven) for the DSC measurements. This research is supported by the FWO research project—G.0492.10; the FWO research project—G.0360.09; and the KU Leuven research project—OT/11/064.


  1. 1.
    Rossini FD. Chemical thermodynamics. New York: Wiley; 1950.Google Scholar
  2. 2.
    Jakobi R, Gmelin E, Ripka K. High-precision adiabatic calorimetry and the specific heat of cyclopentane at low temperature. J. Therm. Anal. 1993;40(3):871–6. doi: 10.1007/BF02546845.CrossRefGoogle Scholar
  3. 3.
    Archer DG, Kirklin DR. NIST and standards for calorimetry. Thermochim. Acta 2000;347(1–2):21–30. doi: 10.1016/S0040-6031(99)00426-8.CrossRefGoogle Scholar
  4. 4.
    Schnelle W, Gmelin E. Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim. Acta 2002;391(1–2):41–9. doi: 10.1016/S0040-6031(02)00162-4.CrossRefGoogle Scholar
  5. 5.
    Watson ES, O’Neill MJ, Justin J, Brenner N. A differential scanning calorimeter for quantitative differential thermal analysis. Anal. Chem. 1964;36(7):1233–8. doi: 10.1021/ac60213a019.CrossRefGoogle Scholar
  6. 6.
    O’Neill MJ. The analysis of a temperature-controlled scanning calorimeter. Anal. Chem. 1964;36(7):1238–45. doi: 10.1021/ac60213a020.CrossRefGoogle Scholar
  7. 7.
    Watson ES, O’Neill MJ. Differential microcalorimeter. US Patent 3,263,484;1966.Google Scholar
  8. 8.
    Wunderlich B. Thermal analysis. New York: Academic Press; 1990.Google Scholar
  9. 9.
    Sullivan PF, Seidel G. Steady-state, ac-temperature calorimetry. Phys. Rev. 1968;173(3):679–85. doi: 10.1103/PhysRev.173.679.CrossRefGoogle Scholar
  10. 10.
    Garland CW. High-resolution ac calorimetry and critical behavior at phase transitions. Thermochim. Acta 1985;88(1):127–42. doi: 10.1016/0040-6031(85)85420-4.CrossRefGoogle Scholar
  11. 11.
    Birge N, Nagel SR. Specific-heat spectroscopy of the glass transition. Phys. Rev. Lett. 1985;54(25):2674–7. doi: 10.1103/PhysRevLett.54.2674.CrossRefGoogle Scholar
  12. 12.
    Thoen J, Glorieux C. Photothermal techniques for heat capacities. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: Royal Society of Chemistry; 2010. p. 264–86. doi: 10.1039/9781847559791-00264.CrossRefGoogle Scholar
  13. 13.
    Marinelli M, Mercuri F, Zammit U. Heat capacity in liquid crystals. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: Royal Society of Chemistry; 2010. p. 367–89. doi: 10.1039/9781847559791-00367.CrossRefGoogle Scholar
  14. 14.
    Jung DH, Moon IK, Jeong YH. Peltier AC calorimeter. Thermochim. Acta 2002;391(1–2):7–12. doi: 10.1016/S0040-6031(02)00159-4.CrossRefGoogle Scholar
  15. 15.
    Yun YJ, Jung DH, Moon IK, Jeong YH. Peltier tip calorimeter. Rev. Sci. Instrum. 2006;77(6):064,901. doi: 10.1063/1.2204584.CrossRefGoogle Scholar
  16. 16.
    Thoen J, Bloemen E, Van Dael W. Heat capacity of the binary liquid system triethylamine–water near the critical solution point. J. Chem. Phys. 1978;68(2):735–44. doi: 10.1063/1.435746.CrossRefGoogle Scholar
  17. 17.
    Bloemen E, Thoen J, Van Dael W. The specific heat anomaly in triethylamine–heavy water near the critical solution point. J. Chem. Phys. 1980;73(9):4628–35. doi: 10.1063/1.440702.CrossRefGoogle Scholar
  18. 18.
    Bloemen E, Thoen J, Van Dael W. The specific heat anomaly in some ternary liquid mixtures near a critical solution point. J. Chem. Phys. 1981;75(3):1488–95. doi: 10.1063/1.442155.CrossRefGoogle Scholar
  19. 19.
    Thoen J, Bloemen E, Marynissen H, Van Dael W. High-resolution calorimetric investigation of phase transitions in liquids. In: Proceedings of the 8th Symposium on Thermophysical Properties. New York: American Society of Mechanical Engineers (ASME); 1982. p. 422.Google Scholar
  20. 20.
    Thoen J, Marynissen H, Van Dael W. Temperature dependence of the enthalpy and the heat capacity of the liquid-crystal octylcyanobiphenyl (8CB). Phys. Rev. A 1982;26(5):2886–905. doi: 10.1103/PhysRevA.26.2886.CrossRefGoogle Scholar
  21. 21.
    Thoen J. Thermal investigations of phase transitions in thermotropic liquid crystals. Int. J. Mod. Phys. B 1995;9(18–19):2157–218. doi: 10.1142/S0217979295000860.CrossRefGoogle Scholar
  22. 22.
    Thoen J, Cordoyiannis G, Glorieux C. Investigations of phase transitions in liquid crystals by means of adiabatic scanning calorimetry. Liq. Cryst. 2009;36(6–7):669–84. doi: 10.1080/02678290902755564.CrossRefGoogle Scholar
  23. 23.
    Thoen J. High resolution adiabatic scanning calorimetry and heat capacities. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: Royal Society of Chemistry; 2010. p. 287–306. doi: 10.1039/9781847559791-00287.CrossRefGoogle Scholar
  24. 24.
    Thoen J, Leys J, Glorieux C. Adiabatic scanning calorimeter. Int. Appl. PCT/BE2011/000042, filed July 2010, patents pending.Google Scholar
  25. 25.
    Atkins P. Physical chemistry. 6th ed. Oxford: Oxford University Press; 1998.Google Scholar
  26. 26.
    ASTM: E928–08 Standard test method for determination of purity by differential scanning calorimetry. 2008. doi: 10.1520/E0928-08.
  27. 27.
    Mastrangelo SVR, Dornte RW. Solid solutions treatment of calorimetric purity data. J. Am. Chem. Soc. 1955;77(23):6200–01. doi: 10.1021/ja01628a037.CrossRefGoogle Scholar
  28. 28.
    Boitard É, Bros JP, Laffitte M. Chaleur spécifique du gallium au voisinage du point de fusion. J. Chim. Phys. Phys. Chim. Biol. 1969;66(1):166–70.Google Scholar
  29. 29.
    Adams GB, Johnston HL, Kerr EC. The heat capacity of gallium from 15 to 320°K. The heat of fusion at the melting point. J. Am. Chem. Soc. 1952;74(19):4784–7. doi: 10.1021/ja01139a017.CrossRefGoogle Scholar
  30. 30.
    Amitin EB, Minenkov YF, Nabutovskaya OA, Paukov IE, Sokolova SI. Thermodynamic properties of gallium from 5 to 320 K. J. Chem. Thermodyn. 1984;16(5):431–6. doi: 10.1016/0021-9614(84)90199-X.CrossRefGoogle Scholar
  31. 31.
    Archer DG. The enthalpy of fusion of gallium. J. Chem. Eng. Data 2002;47(2):304–9. doi: 10.1021/je015532p.CrossRefGoogle Scholar
  32. 32.
    Drebushchak VA. Thermophysical theory of DSC melting peak. J. Therm. Anal. Cal. 2012;109(2):545–53. doi: 10.1007/s10973-012-2216-7.CrossRefGoogle Scholar
  33. 33.
    Minohara M, Tozaki K, Hayashi H, Inaba H. Effect of the magnetic field on the melting transition of Ga and In by nW-stabilized DSC. J. Therm. Anal. Cal. 2006;86(3):833–7. doi: 10.1007/s10973-005-7134-5.CrossRefGoogle Scholar
  34. 34.
    NIST: NIST chemistry WebBook. Accessed 25 Sept 2013.
  35. 35.
    Lavut EG, Chelovskaya NV. Design and testing of a hybrid of isoperibol and phase-change calorimeters for measurements of the enthalpies of reactions requiring prolonged heating. J. Chem. Thermodyn. 1995;27(12):1341–8. doi: 10.1006/jcht.1995.0143.CrossRefGoogle Scholar
  36. 36.
    Frenkel J. A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 1939;7(7):538–47. doi: 10.1063/1.1750484.CrossRefGoogle Scholar
  37. 37.
    Kristensen JK, Cotterill RMJ. On the existence of pre-melting and after-melting effects: a neutron scattering investigation. Philos. Mag. 1977;36(2):437–52. doi: 10.1080/14786437708244946.CrossRefGoogle Scholar
  38. 38.
    Bolling GF. On the average large-angle grain boundary. Acta Metall. 1968;16(9):1147–57 doi: 10.1016/0001-6160(68)90049-7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Jan Leys
    • 1
  • Patricia Losada-Pérez
    • 1
    • 2
  • Christ Glorieux
    • 1
  • Jan Thoen
    • 1
  1. 1.Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en SterrenkundeKU LeuvenLeuvenBelgium
  2. 2.Institute for Materials Research IMOHasselt UniversityDiepenbeekBelgium

Personalised recommendations