Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 2, pp 915–921 | Cite as

Study of thermal behavior of CrO3 using TG and DSC

  • S. A. A. SajadiEmail author
  • M. Khaleghian
Article

Abstract

Using two techniques of thermogravimetry and differential scanning calorimetry under O2 and N2 gas atmosphere from 25 to 600 °C, the thermal behavior of chromium(VI) oxide CrO3 was investigated. The identity of products at different decomposition steps was confirmed by XRD technique. Both techniques produced similar results supporting the same steps for the compound. The received products were investigated by SEM electron microscope. The form and the size of crystals were investigated. Three distinct energy changes were observed, namely, two endothermic and one exothermic in DSC. The amount of ∆H for each peak is also reported.

Keywords

Chromium(VI) oxide TG DSC XRD 

References

  1. 1.
    Ullmann. Encyclopedia of industrial chemistry (5. Auflage) “chromium and chromium alloys”, vol. A7. Weinheim: VCH; 1986. p. 43.Google Scholar
  2. 2.
    Gmelin. Handbook of inorganic and organometalic chemistry “chromium”, vol. 52. Berlin: Springer; 1963.Google Scholar
  3. 3.
    Greenwood N. Chemie der Elemente. Weinheim: Verlagsgesellschaft VCH; 1988. p. 440–53.Google Scholar
  4. 4.
    Holleman AF, Wiberg E. Lehrbuch der anorganischen Chemie, vol. 101. deGruyter: Auglage; 1995.Google Scholar
  5. 5.
    Khilla MA, Hanafi ZM, Mohamed AK. Physico-chemical properties of chromium trioxide and its suboxides. Thermochim Acta. 1982;59(2):139–47.CrossRefGoogle Scholar
  6. 6.
    Navrotsky A. Thermochemistry of chromium compounds, especially oxides at high temperature. Geochim Cosmochim Acta. 1975;39(6–7):819–32.CrossRefGoogle Scholar
  7. 7.
    Espinosa DCR, Tenório JAS. The case of healthcare waste and exhausted batteries. Waste Manag. 2001;21(4):405–10.CrossRefGoogle Scholar
  8. 8.
    Kittaka S, Morooka T, Kitayama K, Morimoto T. Thermal decomposition of chromium oxide hydroxide. J Solid State Chem. 1985;58(2):187–93.CrossRefGoogle Scholar
  9. 9.
    Oryshich IV, Poryadchenko NE, Rakitskii AN. High temperature oxidation of intermetallics formed by group IV transition metals with chromium. Prot Met. 2001;37(4):353–6.CrossRefGoogle Scholar
  10. 10.
  11. 11.
    John FP, Bruce RL. “Chromite”. Industrial minerals and rocks: commodities, markets, and uses. 7th ed. Colorado: SME; 2006. ISBN 978-0-87335-233-8.Google Scholar
  12. 12.
    Chandra V, Kumar A. Spectrochim Acta Part A. 2013;102:250–5.CrossRefGoogle Scholar
  13. 13.
    Jóźwiak WK, Ignaczak W, Dominiak D, Maniecki TP. Thermal stability of bulk and silica supported chromium trioxide. Appl Catal A. 2004;258(1):33–45.CrossRefGoogle Scholar
  14. 14.
    Barvinschi P, Barbu M, Stoia M, Stefanescu M. Evaluation of cation influence on the formation of M(II)Cr2O4 during the thermal decomposition of mixed carboxylate type precursures. J Therm Anal Calorim. 2013;112:359–66.CrossRefGoogle Scholar
  15. 15.
    Labus S, Malecki A, Gajerski R. Investigation of thermal decomposition of CrOx (x ≥ 2.4). J Therm Anal Calorim. 2003;74:13–20.CrossRefGoogle Scholar
  16. 16.
    Udupa V. Solid state reactions in the system oxalate-bromate-chromium(III) oxide. Thermochim Acta. 1976;16(2):231–5.CrossRefGoogle Scholar
  17. 17.
    Soleimani E. Synthesis, spectral and thermal behavior of two novel complexes of Cr(III) with dibromobenziloxime. J Therm Anal Calorim. 2013;111:129–36.CrossRefGoogle Scholar
  18. 18.
    Royer L, Ledoux X, Mathieu S, Steinmetz P. On the oxidation and nitridation of chromium at 1300. Oxid Met. 2010;74:79–92.CrossRefGoogle Scholar
  19. 19.
    Jianian S, Longjiang Z, Tiefan L. High temperature oxidation of Fe–Cr alloys in wet oxygen. Oxid Met. 1997;48:347.CrossRefGoogle Scholar
  20. 20.
    Zurek Z. Solid State Phenom. 1995;41:185.CrossRefGoogle Scholar
  21. 21.
    Tveten B, Hultquist G, Norby T. Influence of hydrogen in some metals on aqueous-and gaseous corrosion. Oxid Met. 1999;51:221.CrossRefGoogle Scholar
  22. 22.
    Asteman H, Svensson JE, Johansson LG, Norell M. Hydrogen dissolution into 10 % chromium ferritic steels during high-temperature steam oxidation. Oxid Met. 1999;52:95.CrossRefGoogle Scholar
  23. 23.
    Gleeson B, Harper MA. High temperature oxidation and corrosion of metals. Oxid Met. 1998;49:373.CrossRefGoogle Scholar
  24. 24.
    de Asmundis C, Gesmundo F, Bottino C. Oxid Met. 1980;14:351.CrossRefGoogle Scholar
  25. 25.
    Fox P, Lees DG, Lorimer GW. An investigation of growth mechanism of scale formatted on chromium. Oxid Met. 1991;36:491.CrossRefGoogle Scholar
  26. 26.
    Buscail H, Jacob YP, Stroosnijder MF, Caudron E, Cueff R, Rabaste F, Perrier V. Structure and morphology studies of film at elevated temperature in hypersonic environment. Mater Sci Forum. 2004;461:93–100.CrossRefGoogle Scholar
  27. 27.
    Taylor JR, Dinsdale AT. A thermodynamic assessment of the Ni–O, Cr–O, and Cr–Ni–O systems using the ionic liquid and compound energy models. Z Metallkd. 1990;81:354–66.Google Scholar
  28. 28.
    Zaki MI, Fahim RB. Thermal decomposition and creation of reactive solid surfaces. J Therm Anal. 1986;3(4):825–34.Google Scholar
  29. 29.
    Fouad NE, Halawy SA, Mohamed MA, Zaki MI. Kinetic and thermodynamic parameter of the decomposition of chromium chromate in different gas atmospheres. Thermochim Acta. 1999;32(1):23–9.CrossRefGoogle Scholar
  30. 30.
    Sajadi SAA, Hashemian SJ. Study of Morphology of PbO. J Sci A.Z.U. 2001;14(2):25–31.Google Scholar
  31. 31.
    Sajadi SAA. Thermal behaivior of lead acetate. Sci Soc Appl Chem. 2001;8:1–6.Google Scholar
  32. 32.
    Sajadi SAA. Study of thermal decomposition of PbCO3 and their derivates, their application in The industry. J Sci T.U. 2002;2:0.Google Scholar
  33. 33.
    Sajadi SAA, Hashemian SJ. Synthesis of Lead Hydroxide Carbonate 2Pb(OH)2·3PbCO3 and investigation on the morphology and thermal properties. Iran J Chem Chem Eng. 2005;24:2.Google Scholar
  34. 34.
    Sajadi SAA, Alamolhoda, AA. Thermal analysis of Cr in different atmospheres. Inorg Mat. 2013 (in press).Google Scholar
  35. 35.
    Sajadi SAA, Alamolhoda AA, Hashemian SJ. Thermal behavior of alkaline lead acetate, a study of thermogravimetry and differential calorimetry. Scientia Iranica. 2008;15(4):435–9.Google Scholar
  36. 36.
    Kirklin DR. Review of previous thermodynamic property values for chromium and some of its compounds. J Phys Chem Ref Data. 1999;28(6):1675–704.CrossRefGoogle Scholar
  37. 37.
    Yue W, Zhou W. Supplementary Material (ESI) for Journal of Materials Chemistry, This journal is (c) The Royal Society of Chemistry; 2007.Google Scholar
  38. 38.
    Hsieh M, Ge Y, Khan H, Michal M, Ernst F, Heuer AH. Volatility diagrams for the Cr–O and Cr–Cl systems: application to removal of Cr2O3-rich passive films on stainless steel. Metall Mater Trans B. 2012;43(5):1187–201.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Institute of Water & EnergySharif University of TechnologyTehranIran

Personalised recommendations