Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 2, pp 765–769 | Cite as

Heat capacity and thermal expansion of icosahedral lutetium boride LuB66

  • V. V. Novikov
  • D. V. Avdashchenko
  • A. V. MatovnikovEmail author
  • N. V. Mitroshenkov
  • S. L. Bud’ko
Article

Abstract

The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2–300 K were analysed in the Debye–Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.

Keywords

Heat capacity Thermal expansion Low temperatures Borides 

Notes

Acknowledgements

The work was supported by the Ministry of Education and Science of the Russian Federation (Project 14.B37.21.0886) and the President Grant (Project 14.124.13.7302-MK).

References

  1. 1.
    Richards SM, Kasper JS. The crystal structure of YB66. Acta Crystallogr B. 1969;25(2):237–51.CrossRefGoogle Scholar
  2. 2.
    Mori T. Higher Borides. In: Gschneidner KA, Bunzl J-C, Pecharsky V, editors. Handbook on the physics and chemistry of rare-earths. Amsterdam: Elsevier; 2008. p. 105–73.Google Scholar
  3. 3.
    Wong J, Tanaka T, Rowen M, Schäfers F, Müller BR, Rek ZU. YB66 a new soft X-ray monochromator for synchrotron radiation. II. Characterization. J Synchrotron Radiat. 1999;6(6):1086–95.CrossRefGoogle Scholar
  4. 4.
    Tanaka T, Rek ZU, Wong J, Rowen M. FZ crystal growth of monochromator-grade YB66 single crystals as guided by topographic and double-crystal diffraction characterization. J Cryst Growth. 1998;192(1–2):141–51.CrossRefGoogle Scholar
  5. 5.
    Wong J, Shimkaveg G, Goldstein W, Eckart M, Tanaka T, Rek ZU, Tompkins H. YB66: a new soft-X-ray monochromator for synchrotron radiation. Nucl Instrum Methods A. 1990;291(1–2):243–9.CrossRefGoogle Scholar
  6. 6.
    Flachbart K, Gabani S, Mori T, Siemensmeyer K. Magnetic ordering in RB66 boron-rich borides.In: APS March Meeting, 2010, Portland. K1.034.Google Scholar
  7. 7.
    Flachbart K, Gabani S, Mori T, Siemensmeyer K. Magnetic ordering in boron-rich borides TbB66 and GdB66. Acta Phys Pol A. 2010;118:875.Google Scholar
  8. 8.
    Kim H, Bud’ko SL, Tanatar MA, Avdashchenko DV, Matovnikov AV, Mitroshenkov NV, Novikov VV, Prozorov R. Magnetic properties of RB66 (R = Gd, Tb, Ho, Er, and Lu). J Supercond Nov Magn. 2012;25(7):2371–5.CrossRefGoogle Scholar
  9. 9.
    Novikov VV, Avdashchenko DV, Bud’ko SL, Mitroshenkov NV, Matovnikov AV, Kim H, Tanatar MA, Prozorov R. Spin glass and glass-like lattice behaviour in HoB66 at low temperatures. Philos Mag. 2013;93(9):1110–23.CrossRefGoogle Scholar
  10. 10.
    Sirota NN, Novikov VV, Antjukhov AM. Thermodynamic properties of solid solutions of gallium and indium arsenide in the temperature range of 5–300 K. J Phys Chem. 1983;57(3):542.Google Scholar
  11. 11.
    Sirota NN, Novikov VV. Heat capacity, mean square ion displacements and lattice parameter of DyB6 at 5–300 K. J Mater Process Manu. 1998;7(1):111–4.CrossRefGoogle Scholar
  12. 12.
    Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Thermal properties of TbB4. J Therm Anal Calorim. 2013;113(2):779–85.CrossRefGoogle Scholar
  13. 13.
    Properties, preparation and application of high-melting compounds: reference book. In: Kosolapova TYa, editor. Moscow: Metallurgy; 1986. p. 927.Google Scholar
  14. 14.
    Ramirez AP, Kowach GR. Large low temperature specific heat in the negative thermal expansion compound ZrW2O8. Phys Rev Lett. 1998;80:4903.CrossRefGoogle Scholar
  15. 15.
    Slack GA, Oliver DW, Horn FH. Thermal conductivity of boron and some boron compounds. Phys Rev B. 1971;4(6):1714–20.CrossRefGoogle Scholar
  16. 16.
    Cahill DG, Fischer HE, Watson SK, Pohl RO, Slack GA. Thermal properties of boron and borides. Phys Rev B. 1989;40(5):3254–60.CrossRefGoogle Scholar
  17. 17.
    Mori T, Martin J, Nolas G. Thermal conductivity of YbB44Si2. J Appl Phys. 2007;102:073510.CrossRefGoogle Scholar
  18. 18.
    Mukherjee GD, Bansal C, Chatterjee A. Thermal expansion study of ordered and disordered Fe3Al: an effective approach for the determination of vibrational entropy. Phys Rev Lett. 1996;76:1876–9.CrossRefGoogle Scholar
  19. 19.
    Madelung O, Rössler U, Schulz M, editors. Non-Tetrahedrally Bonded Elements and Binary Compounds I, vol. 41C., Landolt-Börnstein—group III condensed matter. Berlin: Springer; 1998. p. 1–4.Google Scholar
  20. 20.
    Tonnies JJ, Gschneidner KA, Spedding FH. Elastic moduli and thermal expansion of lutetium single crystals from 4.2 to 300 K. J Appl Phys. 1971;42:3275.CrossRefGoogle Scholar
  21. 21.
    Parshin DA. Interactions of soft atomic potentials and universality of low-temperature properties of glasses. Phys Rev B. 1994;49(14):9400–18.CrossRefGoogle Scholar
  22. 22.
    Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Low-frequency modes and peculiarities of lattice thermal properties of RE-tetraborides. Phys Status Solidi B. 2014. In press.Google Scholar
  23. 23.
    Novikov VV, Morozov AV, Matovnikov AV, Polesskaya YN, Sakhoshko NV, Avdashchenko DV, Kornev BI, Solemennik VD, Novikova VV. Low-temperature heat capacity of rare-earth tetraborides. Solid State Phys. 2011;53(9):1743–7.CrossRefGoogle Scholar
  24. 24.
    Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Heat capacity and thermal expansion of gadolinium tetraboride at low temperatures. J Appl Phys. 2012;111:063907.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • V. V. Novikov
    • 1
  • D. V. Avdashchenko
    • 1
  • A. V. Matovnikov
    • 1
    Email author
  • N. V. Mitroshenkov
    • 1
  • S. L. Bud’ko
    • 2
    • 3
  1. 1.Petrovsky Bryansk State UniversityBryanskRussia
  2. 2.Ames LaboratoryU.S. DOEAmesUSA
  3. 3.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations