Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 1, pp 391–400 | Cite as

Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities

  • Ehab M. Zayed
  • M. A. Zayed
  • Ahmed M. M. Hindy
Article

Abstract

The complexing behavior of H2L ((N,NZ,N,NE)-N,N’-(ethane-1,2-diylbis(oxy)bis(2,1-phenylene)bis(methanylylidene)bis(1-hydrazinylmethanethioamide)) toward the transition metal ions namely Fe(III), Co(II), Ni(II), Cu(II), Cd(II), and Zn(II) have been examined by elemental analyses, magnetic measurements, electronic, IR, and 1H-NMR. Thermal properties and decomposition possibilities of all complexes are suggested. The interpretation of all thermal decomposition stages has been evaluated. The free ligand and its metal complexes have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillus subtilis, and Staphylococcus aurous bacteria in order to assess their antimicrobial potential. The results indicate that the metal complexes are also found to have more antimicrobial activity than the parent ligand.

Graphical Abstract

The proposed structure of complexes. Novel Schiff base and its metal complexes were prepared and characterized based on elemental analyses, IR, 1H-NMR, magnetic moment, molar conductance, and thermal analyses techniques. Complexes of 1:1 [Metal]:[Ligand] ratio for Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) are formed. They are electrolytes in which ligand coordinated to the metal ions in a uni-negative hexa-dentate manner with O2N2 donor sites of the etheric O, and azomethine N atoms and have octahedral geometry.

Keywords

Spectral studies Transition metal complexes Thermal analyses Biological activity 

References

  1. 1.
    Rakesh MT, Tushar SM, Mitesh BG, Manish KS. Synthesis and characterization of Cu(II), Ni(II) and Co(II) based 1,4-substituted thiosemicarbazone complexes. Chem Sci Trans. 2013;2(1):135–40.Google Scholar
  2. 2.
    Manav N, Gandhi N, Kaushik NK. Some tribenzyl tin (IV) complexes with thiohydrazides and thiodiamines. Synthesis, characterization and thermal studies. J Therm Anal Calorim. 2000;61:127–34.CrossRefGoogle Scholar
  3. 3.
    Mishra AK, Mishra SB, Manav N, Kaushik NK. Thermal and spectral studies of palladium (II) complexes. J Therm Anal Calorim. 2007;90(2):509–15.CrossRefGoogle Scholar
  4. 4.
    Patel MN, Pansuriya PB, Chhasatia MR. Synthesis, spectroscopy, thermal and biological aspect of novel six-coordinated dimeric iron (III) mixed-ligand complexes. Appl Organomet Chem. 2008;22(8):415–26.CrossRefGoogle Scholar
  5. 5.
    Li MX, Zhou J, Chen CL, Wang JP. Synthesis, crystal structure and antitumor study of a zinc complex of the 2-benzoylpyridine thiosemicarbazone ligand. Z Naturforsch. 2008;63b:280–4.Google Scholar
  6. 6.
    Kumar P, Shri JJT. Synthesis and antimicrobial activities of the 4-chloro-N’-(4-methoxybenzylidene)-benzohydrazide Schiff base promoted by meta (II) ions. Experiment. 2013;11(1):476–82.Google Scholar
  7. 7.
    Kaizer J, Sigmond ZZ, Ganszky I, Speier G, Giorgi M, Reglier M. New functional model complexes of intradiol-cleaving catechol dioxygenases: properties and reactivity of CuII(L)(O2Ncat). Inorg Chem. 2007;46:4660.CrossRefGoogle Scholar
  8. 8.
    Kaima W, Titzea C, Schurra T, Siegera M, Lawson M, Jordanov J, Rojasc D, Garcı′ AM, Manzur J. Reactivity of copper(I) complexes with tripodal ligands towards O2: structures of a precursor [L3CuI(NCCH3)](BF4), L3Tris(3-isopropyl-4,5-trimethylenepyrazolyl)methane and of its oxidation product [L3CuII(μ-OH)2CuIIL3](BF4)2 with strong antiferromagnetic spin–spin coupling. Z Anorg Allg Chem. 2005;631:2568–74.CrossRefGoogle Scholar
  9. 9.
    Abd El Wahed MG, Nour EM, Teleb S, Fahim S. Thermodynamic and thermal investigation of Co(II), Ni(II) and Cu(II) complexes with adenine. J Therm Anal Calorim. 2004;76:343.CrossRefGoogle Scholar
  10. 10.
    Khan MMT, Halligudi SB, Shukla S, Shaikh ZA. Carbonylation of nitrobenzene to phenylurethane catalyzed by Ru(III)-Schiff base complexes. J Mol Catal. 1990;57:301.CrossRefGoogle Scholar
  11. 11.
    Singha UI, Singha RKB, Devib WR, Singh CB. Schiff base complexes of copper (II) ions: synthesis, characterization and antimicrobial studies. J Chem Pharm Res. 2012;4(2):1130–5.Google Scholar
  12. 12.
    Deshpande MM, Seema IH, Kulkarni PA. Preparation, physical characterization and antimicrobial evaluation of Co(II), Ni(II) and Fe(III) complexes of heterocyclic Schiff bases. Int J Biol Pharm Res. 2013;4(6):460–4.Google Scholar
  13. 13.
    Kumar G, Kumar D, Singh CP, Kumar A, Rana VB. Synthesis, physical characterization and antimicrobial activity of trivalent metal Schiff base complexes. J Serb Chem Soc. 2010;75(5):629–37.CrossRefGoogle Scholar
  14. 14.
    Mohamed RR, Fekry AM. Antimicrobial and anticorrosive activity of adsorbents based on Chitosan Schiff’s base. Int J Electrochem Sci. 2011;6:2488–508.Google Scholar
  15. 15.
    Abd El-Halim HF, Omar MM, Mohamed GG, El-Ela Sayed MA. Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes. Eur J Chem. 2011;2(2):178–88.CrossRefGoogle Scholar
  16. 16.
    Tverdova NV, Pelevina ED, Giricheva NI, Girichev GV, Kuzmina NP, Kotova OV. Molecular structures of 3d metal complexes with various Schiff bases studied by gas-phase electron diffraction and quantum-chemical calculations. J Mol Struct. 2012;1012:151–61.CrossRefGoogle Scholar
  17. 17.
    Anitha C, Sheela CD, Tharmaraj P, Sumathi S. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde. Spectrochim Acta A. 2012;96:493–500.CrossRefGoogle Scholar
  18. 18.
    Raman N, Sobha S, Thamaraichelvan A. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents. Spectrochim Acta A. 2011;78:888–98.CrossRefGoogle Scholar
  19. 19.
    Ammar RAA, Alaghaz AMA. Synthesis, spectroscopic characterization and potentiometric studies of a tetradentate [N2O2] Schiff base, N,N’-bis(2-hydroxybenzylidene)-1,1-diaminoethane and its Co(II), Ni(II), Cu(II) and Zn(II) complexes. Int J Electrochem Sci. 2013;8:8686–99.Google Scholar
  20. 20.
    Halli MB, Sumathi RB, Kinni M. Synthesis, spectroscopic characterization and biological evaluation studies of Schiff’s base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes. Spectrochim Acta A. 2012;99:46–56.CrossRefGoogle Scholar
  21. 21.
    Garnovskii AD, VasilChenko IS. Rational design of metal coordination compounds with azomethine ligands. Russ Chem Rev. 2002;71:943–96.CrossRefGoogle Scholar
  22. 22.
    Dean JA. Lange’s handbook of chemistry, vol. 14. New york: McGraw-Hill; 1992.Google Scholar
  23. 23.
    Ilhan S, Temel H, Yilmaz I, Sekerci M. Synthesis, structural characterization and electrochemical studies of new macrocyclic Schiff base containing pyridine head and its metal complexes. J Organomet Chem. 2007;692:3855–65.CrossRefGoogle Scholar
  24. 24.
    Omar MM, Mohamed GG, Ibrahim AA. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies. Spectrochim Acta A. 2009;73(2):358–69.CrossRefGoogle Scholar
  25. 25.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced in inorganic chemistry. 6th ed. New York: Wiley; 1999.Google Scholar
  26. 26.
    Mohamed GG, Soliman MH. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity. Spectrochim Acta A. 2010;76:341–7.CrossRefGoogle Scholar
  27. 27.
    Mohamed GG, El-Gamel NEA, Teixidor F. Complexes of 2-(2-benzimidazolylazo)-4-acetamidophenol, a phenoldiazenyl-containing ligand. Polyhedron. 2001;20:2689–96.CrossRefGoogle Scholar
  28. 28.
    Zayed MA, Hawash MF, Fahmey MA, El-Gizouli AMA. Investigation of ibuprofen drug using mass spectrometry, thermal analyses and semi-empirical molecular orbital calculation. J Therm Anal Calorim. 2012;108:315–22.CrossRefGoogle Scholar
  29. 29.
    Karthikeyan MS, Parsad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg Med Chem. 2006;14:7482–9.CrossRefGoogle Scholar
  30. 30.
    Shahabadi N, Ghasemian Z, Hadidi S. Binding studies of a new water-soluble iron(III) Schiff base complex to DNA using multispectroscopic methods. Bioinorg Chem Appl. 2012;2012:1–9.Google Scholar
  31. 31.
    Sen S, Farooqui NA, Dutta S, Easwari TS, Gangwar V, Upadhya K, Verma S, Kumar A. Physicochemical and biological evaluation of some Schiff base by conventional and microwave assisted method. Der Pharma Chem. 2013;5(3):128–34.Google Scholar
  32. 32.
    Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur J Med Chem. 2006;41:147–53.CrossRefGoogle Scholar
  33. 33.
    Khalil MMH, Ismail EH, Mohamed GG, Zayed EM, Badr A. Synthesis and characterization of a novel Schiff base metal complexes and their application in determination of iron in different types of natural water. Open J Inorg Chem. 2012;2:13–21.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Ehab M. Zayed
    • 1
  • M. A. Zayed
    • 2
  • Ahmed M. M. Hindy
    • 2
  1. 1.Green Chemistry DepartmentNational Research CentreGizaEgypt
  2. 2.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations