Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1311–1319 | Cite as

Structural, thermal and electrical properties of poly(methyl methacrylate)/CaCu3Ti4O12 composite sheets fabricated via melt mixing

  • P. Thomas
  • R. S. Ernest Ravindran
  • K. B. R. Varma
Article

Abstract

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T g ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400–600 cm−1 in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Keywords

Poly(methyl methacrylate) (PMMA) CaCu3Ti4O12 (CCTO) Polymer composite Thermal properties 

Notes

Acknowledgements

The management of Central Power Research Institute is acknowledged for the financial support (CPRI Project No. R-DMD-01/1415).

References

  1. 1.
    Wang H, Xu P, Zhong W, Shen L, Du Q. Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym Degrad Stab. 2005;87:319–27.CrossRefGoogle Scholar
  2. 2.
    Stéphanie E, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, Calberg C, Jerome R. Effects of incorporation of modified silica nanopartilces on the mechanical and thermal properties of PMMA. J Therm Anal Cal. 2007;87(1):101–4.CrossRefGoogle Scholar
  3. 3.
    Bai Y, Cheng Z-Y, Bharti V, Xu HS, Zhang QM. High-permittivity ceramic-powder polymer composites. Appl Phys Lett. 2000;76(25):3804–6.CrossRefGoogle Scholar
  4. 4.
    Dang ZM, Yu YF, Xu HP, Bai J. Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos Sci Techno. 2008;68(1):171–7.CrossRefGoogle Scholar
  5. 5.
    Kuo D-H, Chang CC, Su TY, Wang WK, Lin BY. Dielectric behaviour of multi-doped BaTiO3 epoxy composites. J Eur Ceram Soc. 2001;21(9):1171–7.CrossRefGoogle Scholar
  6. 6.
    Das Gupta DK, Doughty K. Polymer-ceramic composite materials with high permittivity. Thin solid Films. 1988;158:93–105.CrossRefGoogle Scholar
  7. 7.
    Dias CJ, Das-Gupta DK. Key Engineering Materials 92–93. Trans Tech Publications. 1994;217–48.Google Scholar
  8. 8.
    Subramanian MA, Li D, Duran N, Reisner BA, Sleight AW. High permittivity in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem. 2000;151:323–5.CrossRefGoogle Scholar
  9. 9.
    Thomas P, Dwarakanath K, Varma KBR, Kutty TRN. Synthesis of nanoparticles of the giant dielectric materials, CaCu3Ti4O12 from a precursor route. J Therm Anal Cal. 2009;95(1):267–72.CrossRefGoogle Scholar
  10. 10.
    Arbatti M, Shan X, Cheng Z. Ceramic-polymer composites with high dielectric permittivity. Adv Mater. 2007;19:1369–72.CrossRefGoogle Scholar
  11. 11.
    Shriprakash B, Varma KBR. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. J Compos Sci Technol. 2007;67:2363–8.CrossRefGoogle Scholar
  12. 12.
    Tuncer E, Sauers I, James DR, Alvin R, Ellis M, Paranthaman P, Tolga AT, Sathyamurthy S, Karren LM, Li J, Goyal A. Electrical properties of epoxy resin based nano-composites. Nanotechnology. 2007;18(2):25703–6.CrossRefGoogle Scholar
  13. 13.
    Amaral F, Rubinger CPL, Henry F, Costa LC, Valente MA, Timmons AB. Dielectric properties of polystyrene–CCTO composite. J Non-Cryst Solids. 2008;354(47-51):5321–2.CrossRefGoogle Scholar
  14. 14.
    Ramajo LA, Ramírez MA, Bueno PR, Reboredo MM, Castro MS. Dielectric behaviour of CaCu3Ti4O12-epoxy composites. Mater Res. 2008;11(1):85–8.CrossRefGoogle Scholar
  15. 15.
    Thomas P, Varughese KT, Dwarakanath K, Varma KBR. Dielectric properties of poly (vinylidene fluoride/CaCu3Ti4O12 composites. Compos Sci Technol. 2010;70(3):539–45.CrossRefGoogle Scholar
  16. 16.
    Thomas P, Satapathy S, Dwarakanath K, Varma KBR. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Expr Polym Lett. 2010;4(10):632–43.CrossRefGoogle Scholar
  17. 17.
    Thomas P, Ernest Ravindran RS, Varma KBR. Dielectric properties of Poly(methyl methacrylate) (PMMA)/CaCu3Ti4O12 Composites. In: Proceedings of IEEE 10th ICPADM: 2012 Jul 24–28 2012, Bangalore, India.Google Scholar
  18. 18.
    Wenying Zhou, Jing Zuo, Wene Ren. Thermal conductivity and dielectric properties of Al/PVDF composites. Composites. 2012;43:658–64.Google Scholar
  19. 19.
    Manasi S, Fahim M. Dielectric properties of nanographite-filled PMMA composites prepared by in situ polymerization. Polym Compos. 2012;33(5):675–82.CrossRefGoogle Scholar
  20. 20.
    Ramesh S, Wen LC. Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics. 2010;16:255–62.CrossRefGoogle Scholar
  21. 21.
    Marius C, Costache, Wang D, Mathew J, Heidecker J, Manias E, Charles A, Wilkie. The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym Adv Technol. 2006;17:272–80.CrossRefGoogle Scholar
  22. 22.
    Biros J, Larina T, Trekoval J, Pouchly J. Dependence of the glass transition temperature of poly(methyl methacrylates) on their tacticity. Colloid Polym Sci. 1982;260:27–30.CrossRefGoogle Scholar
  23. 23.
    Teng H, Teng H, Koike K, Koike K, Zhou D, Satoh Z, Koike Y, Okamoto Y. High glass transition temperatures of poly(methyl methacrylate) prepared by free radical initiators. Polym Sci Part A Polym Chem. 2009;47:315–7.CrossRefGoogle Scholar
  24. 24.
    Hwu JM, Jiang GJ, Gao ZM, Xie W, Pan WP. The characterization of organic modified clay and clay-filled PMMA nanocomposite. J Appl Polym Sci. 2002;83:1702–10.CrossRefGoogle Scholar
  25. 25.
    Achour ME, Droussi A, Medine D, Oueriagli A, Outzourhit A, Belhadj Mohamed A, Zangar H. Thermal and dielectric properties of polypyrrolepoly (methyl methacrylate) nanocomposites. Int J Phys Sci. 2011;6(22):5075–9.Google Scholar
  26. 26.
    Ramanathan T, Stankovich S, Dikin DA, Liu H, Shen H, Nguyen ST, Brinson LC. Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposite properties. J Polym Sci, Part B: Polym Phys. 2007;45:2097–112.CrossRefGoogle Scholar
  27. 27.
    Liquori AM, Anzuino Q, Coiro VM, Alagni MD, Desantis P, Savino M. Complementary stereospecific interaction between isotactic and syndiotactic polymer molecule. Nature. 1965;206:358.CrossRefGoogle Scholar
  28. 28.
    Rosema M, Haris MH, Kathiresan S, Mohan S. FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chemica. 2010;2(4):316–23.Google Scholar
  29. 29.
    Song M, Long F. Miscibility in blends of poly(vinyl acetate) with poly(methyl methacrylate) studied by FTIR and DSC. Eur Polym J. 1991;27(9):983–6.CrossRefGoogle Scholar
  30. 30.
    Bahaa Hussien. The D.C and A.C. electrical properties of PMMA-Al2O3 composites. Euro J Sci Res. 2011;52(2):236–42.Google Scholar
  31. 31.
    Zou DQ, Yoshida H. Size effect of silica nanoparticles on thermal decomposition of PMMA. J Therm Anal Calorim. 2010;99:21–6.CrossRefGoogle Scholar
  32. 32.
    Wantinee V, Richard LL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103:267–73.CrossRefGoogle Scholar
  33. 33.
    Ahmad S, Ahmad S, Agnihotry SA. Synthesis and characterization of in situ prepared poly(methyl methacrylate) nanocomposites. Bull Mater Sci. 2007;30:31–5.CrossRefGoogle Scholar
  34. 34.
    Bergman R, Alvarez F, Alegria A, Colmenero J. Dielectric relaxation in PMMA revisited. J Non-Cryst Solids. 1998;235–237:580–3.CrossRefGoogle Scholar
  35. 35.
    Kobayashi Y, Kurosawa A, Nagao D, Konno M. Fabrication of barium titanate nanoparticles-PMMA composite films and their dielectric properties. Polym Eng Sci. 2009;49(6):1069–75.CrossRefGoogle Scholar
  36. 36.
    Kumar S, Rath T, Khatua BB, Dhibar AK, Das CK. Preparation and characterization of poly(methyl methacrylate)/multi-walled carbon nanotube composites. J Nanosci Nanotechnol. 2009;9(8):4644–55.CrossRefGoogle Scholar
  37. 37.
    Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR. Multifunctional PMMA-Ceramic composites as structural dielectrics. Polymer. 2010;51:5823–32.CrossRefGoogle Scholar
  38. 38.
    Motaung TE, Luyt AS, Saladino ML, Martino DC, Caponetti E. Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding. Expr Polym Lett. 2012;6(11):871–81.CrossRefGoogle Scholar
  39. 39.
    Zheng W, Wong S-C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composite. Compos Sci Technol. 2003;63:225–35.CrossRefGoogle Scholar
  40. 40.
    Kim D-W, Lee D-H, Kim B-K, Je H-J, Park J-G. Direct assembly of BaTiO3-poly(methyl methacrylate) nanocomposite flims. Macromol Rapid Commun. 2006;27:1821–5.CrossRefGoogle Scholar
  41. 41.
    Chi QG, Gao L, Sun J, Wang X, Lei QQ. The Effect of CaCu3Ti3.95Zr0.05O12 fillers on microstructure and dielectric behavior of CaCu3Ti3.95Zr0.05O12/Polyimide composites. In: Proceedings of IEEE 10th ICPADM: 2012 Jul 24–28 2012, Bangalore, India.Google Scholar
  42. 42.
    Biros J, Larina T, Trekoval J, Pouchly J. Dependence of the glass transition temperature of poly(methyl methacrylates) on their tacticity. Colloid Polym Sci. 1982;260:27–30.CrossRefGoogle Scholar
  43. 43.
    Comer AC, Heilman AL, Kalika DS. Dynamic relaxation characteristics of polymer nanocomposites based on poly(ether imide) and poly(methyl methacrylate). Polymer. 2010;51:5245–54.CrossRefGoogle Scholar
  44. 44.
    Ribelles JLG, Callwa RD. The β dielectric relaxation in some methacrylate polymers. J Polym Sci. Polym Phys. 1985;23:1297–307.Google Scholar
  45. 45.
    Singh L, Ludovice PJ, Henderson CL. Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films. 2004;449(1–2):231–41.CrossRefGoogle Scholar
  46. 46.
    Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater. 2009;21:2889–93.CrossRefGoogle Scholar
  47. 47.
    Ash Benjamin J, Siegel Richard W, Schadler Linda S. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci, Part B. 2004;42:4371.CrossRefGoogle Scholar
  48. 48.
    Choudhury T, Misra MN. Thermal stability of PMMA–clay hybrids. Bull Mater Sci. 2010;33:165.CrossRefGoogle Scholar
  49. 49.
    Yuan XY, Zou LL, Liao CC, Dai JW. Improved properties of chemically modified graphene/poly(methyl methacrylate) nanocomposites via a facile in situ bulk polymerization. eXPRESS Polymer Lett. 2012;6:847–58.CrossRefGoogle Scholar
  50. 50.
    Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Harry J, Ploehn, Loye HC. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials. 2009;2:1697–733.CrossRefGoogle Scholar
  51. 51.
    Gross S, Noto VD, Schubert U. Dielectric investigation of inorganic–organic hybrid film based on zirconium oxocluster—crosslinked PMMA. J Non-Cryst Solids. 2003;322:154–9.CrossRefGoogle Scholar
  52. 52.
    Ishida Y, Yamafuji K. Studies on dielectric behaviors in a series of polyalkyl-methacrylates. Kolloid Z. 1961;177:97–116.CrossRefGoogle Scholar
  53. 53.
    Tomar AK, Mahendia S, Chahal RP, Kumar S. Structural and dielectric spectroscopy studies of polyaniline-poly(methylmethacrylate) composite films. Synth Metals. 2012;162:820–6.CrossRefGoogle Scholar
  54. 54.
    Sharma P, Kanchan DK, Gondaliya N. Effect of nano-filler on structural and ionic transport properties of plasticized polymer electrolyte. Open J Organic Polym Mater. 2012;2(2):38–44.CrossRefGoogle Scholar
  55. 55.
    Provenzano V, Boesch LP, Volterra V, Moynihan CT, Macedo PB. Electrical Relaxation in Na2O·3SiO2 Glass. J Ame Ceram Soc. 1972;55:492–6.CrossRefGoogle Scholar
  56. 56.
    Ibrahim RA. Electrical and optical properties of magnesium-filled polystyrene (PS–Mg) composites. Jl Phys Sci. 2012;23(1):39–56.Google Scholar
  57. 57.
    Hamzah M, Saion E, Kassim A, Mahmud E, Shahrim I. Dielectric properties of polyvinylalcohol-polypyrrole composite polymer films. Pak J Adv Sci. 2009;1(1):9–14.Google Scholar
  58. 58.
    Ahmed H, Farhan LR, Ramadan ZA, Muhammad HAA. Characterization of (PVA- BaSO4.5H2O) Composites. Diyala J Pure Sci. 2012;8(3):296–302.Google Scholar
  59. 59.
    Hamzah M, Saion E, Kassim A, Yousuf M. Temperature dependence of ac electrical conductivity of PVA–PPy–FeCl3 composite polymer films. Malaysian Polym J. 2008;3(2):24–31.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • P. Thomas
    • 1
  • R. S. Ernest Ravindran
    • 1
  • K. B. R. Varma
    • 2
  1. 1.Dielectric Materials DivisionCentral Power Research InstituteBangaloreIndia
  2. 2.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations