Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1417–1425 | Cite as

Thermogravimetric and calorimetric study of cellulose paper at low doses of gamma irradiation

  • Ioan Valentin Moise
  • Ioana Stanculescu
  • Viorica Meltzer


The study of the behaviour of cellulose materials at low doses of ionizing radiation regained the interest because of the recent results showing that physical properties of the paper have less or no changes for absorbed doses below 10 kGy, despite the high decrease of the degree of polymerization. The understanding of the relationship among molecular, microscopic and macroscopic changes in cellulose materials may change the current opinion that irradiation of paper is not the best choice for conservation of cultural heritage. The aim of this study is to reveal the changes in gamma-irradiated pure cellulose paper by simultaneous TG/DSC analysis. For cellulose fibres, the thermal decomposition parameters depend on the cellulose degree of polymerization. For high irradiation doses, there is established a relationship between the absorbed dose and the degree of polymerization. However, a direct relationship between absorbed dose and the parameters of cellulose thermal decomposition for low irradiation doses was not established either in the literature or in our study. By using a peak separation technique, we studied the changes in the region of water loss (70–150 °C) and physical ageing (160–300 °C) for Whatman paper with low initial water content (<1 %), previously gamma irradiated at doses between 0 and 30 kGy. We concluded that strength of the hydrogen bond structure is increasing up to a point when the stress produces fractures in the fibrilar structure. This may explain the results reported for mechanical tests at low dose irradiation and it is in agreement with scanning electron microscopy pictures showing changes in fibril structure at high irradiation doses. Cellulose irradiated at low doses maintains its original hydrogen bond structure despite the decrease of the degree of polymerization.


Thermal analysis Cellulose de-polymerization Hydrogen bond Ionizing radiation Paper preservation 



This study was supported by the Romanian National Authority for Scientific Research, Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), project TEXLECONS, Contr. No. 213/2012 and project ETCOG, Contr. C3-05 IFA-CEA/2012.


  1. 1.
    Bonetti M, Gallo F, Magaudda G, Marconi C, Montanari M. Essais sur l’utilization des rayons gamma pour la sterilization des materiaux libraires. Stud Conserv. 1979;24:59–68.CrossRefGoogle Scholar
  2. 2.
    Tomazello MGC, Wiendl FM. The applicability of gamma radiation to the control of fungi in naturally contaminated paper. Restaurator. 1995;16:93–9.Google Scholar
  3. 3.
    Tiano P. Biodegradation of cultural heritage: Decay mechanisms and control methods. In: 9th ARIADNE Workshop “Historic Material and their Diagnostic”, ARCCHIP, Prague, 22–28 April 2002. Accessed 12 April 2013.
  4. 4.
    Ponta CC. Irradiation conservation of cultural heritage. Nucl Phys News. 2008;18:22–4.CrossRefGoogle Scholar
  5. 5.
    Nunes I, Mesquita N, Cabo Verde S, Trigo MJ, Ferreira A, Carolino MM, Portugal A, Botello ML. Gamma radiation effects on physical properties of parchment documents: assessment of Dmax. Radiat Phys Chem. 2012;81:1943–6.CrossRefGoogle Scholar
  6. 6.
    Abdel-Haliema MEF, Ali MF, Ghaly MF, Sakr AA. Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains isolated from paintings of ancient Egyptian tombs. J Cult Herit. 2013;14:45–50.CrossRefGoogle Scholar
  7. 7.
    Calvini P, Santucci L. Alcuni dati sugli effetti dell’ irradiazione gamma sulla carta. Boll Inst Centr Patolog Libro. 1978;35:55–62.Google Scholar
  8. 8.
    Butterfield FJ. The potential long-term effects of gamma irradiation of paper. Stud Conserv. 1987;32:181–91.Google Scholar
  9. 9.
    Nittérus M. Fungi in archives and libraries. Restaurator. 2000;21:25–40.Google Scholar
  10. 10.
    Silverman R, Bliss M, Erickson H, Fidopiastis N, Francl J, Knight B, Lively K, Neuvirt J, Novotny D, Yeager N. In: Comparing mass drying and sterilization protocols for water-damaged books. National Center for Preservation Technology and Training, Materials Research Series, Accessed 12 April 2013.
  11. 11.
    Charlesby A. The degradation of cellulose by ionizing radiation. J Polym Sci. 1955;15:263–70.CrossRefGoogle Scholar
  12. 12.
    Bouchard J, Methot M, Jordan B. The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose. 2006;13:601–10.CrossRefGoogle Scholar
  13. 13.
    Zinovev OA, Skobkin VS, Lobanov NS, Chugunov OK, Pizhov GYa, Naidenov AYa, Dubinina TP. Radiation sterilization of mail. Atomic Energy. 2006;100:67–71.CrossRefGoogle Scholar
  14. 14.
    Adamo M, Giovannotti M, Magaudda G, Plossi Zappalà M, Rocchetti F, Rossi G. Effect of gamma rays on pure cellulose paper as a model for the study of treatment of biological recovery of biodeteriorated books. Restaurator. 1998;19:41–59.CrossRefGoogle Scholar
  15. 15.
    Adamo M, Brizzi M, Magaudda G, Martinelli G, Plossi-Zappalà M, Rocchetti F, Savagnone F. Gamma radiation treatment of paper in different environmental conditions: chemical, physical and microbiological analysis. Restaurator. 2001;22:107–31.CrossRefGoogle Scholar
  16. 16.
    Area MC, Calvo AM, Felissia FE, Docters A, Miranda M, Raverta V. Influencia de la dosis de radiación y la tasa de dosis sobre las propiedades físicas de papeles comerciales usados en Bibliotecas y Archivos. Proceedings of the 45 Congresso Internacional de Celulose e Papel da ABTCP/VII Congresso Ibero-Americano de Pesquisa de Celulose e Papel; 2012. October, 9–11, 2012, Sao Paulo Brazil.Google Scholar
  17. 17.
    D’Almeida MLO, Barbosa PDSM, Boaratti MFG, Borrely SI. Radiation effects on the integrity of paper. Radiat Phys Chem. 2009;78:489–92.CrossRefGoogle Scholar
  18. 18.
    Magaudda G. The recovery of bio-deteriorated books and archive documents through gamma radiation—some considerations on the results achieved. J Cult Herit. 2004;5:113–8.CrossRefGoogle Scholar
  19. 19.
    Moise IV, Virgolici M, Negut CD, Manea M, Alexandru M, Trandafir L, Zorila FL, Talasman CM, Manea D, Nisipeanu S, Haiducu M, Balan Z. Establishing the irradiation dose for paper decontamination. Radiat Phys Chem. 2012;81:1045–50.CrossRefGoogle Scholar
  20. 20.
    Talasman CM, Radu A, Manea D, Burlacu M. Physico-mechanical tests on the materials from the treated archives. Accesed 12 April 2013.
  21. 21.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W. Comprehensive cellulose chemistry. Volume l: fundamentals and analytical methods. Weinheim: Wiley; 1998.CrossRefGoogle Scholar
  22. 22.
    Shen T, Gnanakaran S. The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J. 2009;96:3032–40.CrossRefGoogle Scholar
  23. 23.
    Kovalev GV, Bugaenko LT. On the crosslinking of cellulose under exposure to radiation. High Energy Chem. 2003;37:209–15.CrossRefGoogle Scholar
  24. 24.
    TAPPI Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. Test Method T 402 sp-08. TAPPI, 1993.Google Scholar
  25. 25.
    Carr DJ, Odlyha M, Cohen N, Phenix A, Hibberd RD. Thermal analysis of new, artificially aged and archival linen. J Therm Anal Calorim. 2003;73:97–104.CrossRefGoogle Scholar
  26. 26.
    Batzer H, Kreibich UT. Influence of water on thermal transitions in natural polymers and synthetic polyamides. Polym Bull. 1981;5:585–90.CrossRefGoogle Scholar
  27. 27.
    Szcześniak L, Rachocki A, Tritt-Goc J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 2008;15:445–51.CrossRefGoogle Scholar
  28. 28.
    Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell TR. The glass transition and crystallization of ball milled cellulose. Cellulose. 2010;17:693–709.CrossRefGoogle Scholar
  29. 29.
    Roig F, Dantras R, Dandurand J, Lacabanne C. Influence of hydrogen bonds on glass transition and dielectric relaxations of cellulose. J Phys D Appl Phys. 2011;44(4):045403.CrossRefGoogle Scholar
  30. 30.
    Hutchinson JM. Determination of the glass transition temperature. Methods correlation and structural heterogeneity. J Therm Anal Calorim. 2009;98:579–89.CrossRefGoogle Scholar
  31. 31.
    Chen W, Lickfield GC, Yang CQ. Molecular modelling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer. 2004;45:1063–71.CrossRefGoogle Scholar
  32. 32.
    Franceschi E, Palazzi D, Pedemonte E. Thermoanalytical contribution to the study on paper degradation. Characterisation of oxidised paper. J Therm Anal Calorim. 2001;66:349–58.CrossRefGoogle Scholar
  33. 33.
    d’Almeida ALFS, Barreto DW, Calado V, d’Almeida JRM. Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim. 2008;91:405–8.CrossRefGoogle Scholar
  34. 34.
    Budrugeac P, Emandi A. The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood. J Therm Anal Calorim. 2001;104:707–16.Google Scholar
  35. 35.
    Melniciuc-Puica N, Lisa G, Rusu I. On the lifetime prediction of old documents. J Therm Anal Calorim. 2010;99:835–42.CrossRefGoogle Scholar
  36. 36.
    Zervos S, Moropoulou A. Methodology and criteria for the evaluationof paper conservation interventions. A literature review. Restaurator. 2007;27:219–74.Google Scholar
  37. 37.
    Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:415–9.CrossRefGoogle Scholar
  38. 38.
    Yao F, Wu Q, Zhou D. Thermal decomposition of natural fibers: global kinetic modeling with nonisothermal thermogravimetric analysis. J Appl Polym Sci. 2009;114:834–42.CrossRefGoogle Scholar
  39. 39.
    Kaloustian J, Pauli AM, Pastor J. Kinetic study of the thermal decompositions of biopolymers extracted from various plants. J Therm Anal Calorim. 2001;63:7–20.CrossRefGoogle Scholar
  40. 40.
    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  41. 41.
    Korosec RC, Lavric B, Rep G, Pohleven F, Bukovec P. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. J Therm Anal Calorim. 2009;98:189–95.CrossRefGoogle Scholar
  42. 42.
    Sperova M, Nasadil P, Prusova A, Kucerık J. A hint on the correlation between cellulose fibers polymerizationdegree and their thermal and thermo-oxidative degradation. J Therm Anal Calorim. 2012;110:71–6.CrossRefGoogle Scholar
  43. 43.
    Whatman 1 CHR Chromatography Paper. Accesed 12 April 2013.
  44. 44.
    Netzsch Peak separation version 2006.01, Netzsch Geraetebau Gmbh.Google Scholar
  45. 45.
    Gonzalez ME, Calvo AM, Kairiyama E. Gamma radiation for preservation of biologically damaged paper. Radiat Phys Chem. 2002;63:263–5.CrossRefGoogle Scholar
  46. 46.
    Soares S, Caminot G, Levchik S. Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym Degrad Stab. 1995;49:275–83.CrossRefGoogle Scholar
  47. 47.
    Prusova A, Smejkalova D, Chytil M, Velebny V, Kucerik J. An alternative DSC approach to study hydration of hyaluronan. Carbohydr Polym. 2010;82:498–503.CrossRefGoogle Scholar
  48. 48.
    Hatakeyama T, Nakamura K, Hatakeyama H. Vaporization of bound water associated with cellulose fibres. Thermochim Acta. 2000;352–353:233–9.CrossRefGoogle Scholar
  49. 49.
    Princi E, Vicini S, Pedemonte E, Arrighi V, McEwen I. Thermal characterisation of cellulose based materials. Investigation of water content. J Therm Anal Calorim. 2005;80:369–73.CrossRefGoogle Scholar
  50. 50.
    Bratu E, Moise IV, Cutrubinis M, Negut DC, Virgolici M. Archives decontamination by gamma irradiation. Nukleonika. 2009;54:77–84.Google Scholar
  51. 51.
    Sjöholm E, Gustafsson K, Norman E. Fibre strength in relation to molecular weight distribution of hardwood kraft pulp. Degradation by gamma irradiation, oxygen/alkali or alkali. Nord Pulp Paper Res. 2000;15:326–32.CrossRefGoogle Scholar
  52. 52.
    Netzsch. Peak separation version. Accessed 12 April 2013.
  53. 53.
    Borsa J, Toth T, Takacs E, Hargittai P. Radiation modification of swollen and chemically modified cellulose. Radiat Phys Chem. 2003;67:509–12.CrossRefGoogle Scholar
  54. 54.
    Han SO, Choi HY. Morphology and surface properties of natural fiber treated with electron beam. In: Méndez-Vilas A., Díaz J, editors. Microscopy: science, technology, applications and education. Formatex Research Center. 2010. pp. 1880–87. Accesed 12 April 2013.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Ioan Valentin Moise
    • 1
    • 2
  • Ioana Stanculescu
    • 1
    • 2
  • Viorica Meltzer
    • 2
  1. 1.IRASM Radiation Processing CenterHoria Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania
  2. 2.Department of Physical Chemistry, Faculty of ChemistryUniversity of BucharestBucharest 3Romania

Personalised recommendations