Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 3, pp 2179–2189 | Cite as

Studies on thermal, spectral, magnetic and biological properties of new Ni(II), Cu(II) and Zn(II) complexes with a bismacrocyclic ligand bearing an aromatic linker

  • Cristina Bucur
  • Mihaela Badea
  • Mariana Carmen Chifiriuc
  • Coralia Bleotu
  • Emilia Elena Iorgulescu
  • Irinel Adriana Badea
  • Maria Nicoleta Grecu
  • Veronica Lazăr
  • Oana-Irina Patriciu
  • Dana Marinescu
  • Rodica Olar
Article

Abstract

Novel complexes of M2LCl4·nH2O type (M:Ni, n = 4; M:Cu, n = 3 and M:Zn, n = 0; L: ligand resulted from 1,4-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde one-pot condensation) were synthesized and characterised by microanalytical, ESI–MS, IR, UV–Vis, 1H NMR and EPR spectra, magnetic data at room temperature and molar conductivities as well. The electrochemical behaviour of complexes was investigated by cyclic voltammetry. Simultaneous TG/DTA measurements were performed in order to evidence the thermal behaviour of the obtained complexes. Processes such as water elimination, fragmentation and oxidative degradation of the organic ligand as well as chloride elimination occurred during thermal decomposition. The antimicrobial assays demonstrate that the compounds exhibited good antibacterial activity, especially against S. aureus and E. coli strains, the most active being the copper(II) complex, which also exhibited the most prominent anti-biofilm effect, suggesting its potential use for the development of new antimicrobial agents. The biological activity was correlated with log P ow values. All complexes disrupt the membrane integrity of HCT 8 tumour cells.

Keywords

Complex Biofilm Cytotoxicity Decaazabismacrocycle One-pot condensation Thermal behaviour 

Supplementary material

10973_2013_3460_MOESM1_ESM.pdf (41 kb)
Electrochemistry (PDF 41 kb)

References

  1. 1.
    Bernhardt PV, Kim JY, Kim Y, Lee YH, Chow S. Macrocycles and medicine—facile synthesis of a bis(macrocycle) with pendent functionality. C R Chim. 2005;8:211–4.CrossRefGoogle Scholar
  2. 2.
    Mewis RE, Archibald SJ. Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev. 2010;254:1686–712.CrossRefGoogle Scholar
  3. 3.
    Salavati-Niasari M, Mir N. Synthesis, characterization and catalytic oxidation of tetrahydrofuran with 16-membered pentaazabis(macrocyclic) copper(II) complexes; {[Cu([16]aneN5)]2R}4+ (R = aromatic nitrogen–nitrogen linkers). J Incl Phenom Macrocycl Chem. 2007;59:223–30.CrossRefGoogle Scholar
  4. 4.
    Hunter TM, McNae IW, Simpson DP, Smith AM, Moggach S, White F, Walkinshaw MD, Parsons S, Sadler PJ. Configurations of nickel–cyclam antiviral complexes and protein recognition. Chem Eur J. 2007;13:40–50.CrossRefGoogle Scholar
  5. 5.
    Drewry JA, Gunning PT. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev. 2011;255:459–72.CrossRefGoogle Scholar
  6. 6.
    Choi H-S, Suh MP. Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew Chem Int Ed. 2009;48:6865–9.CrossRefGoogle Scholar
  7. 7.
    De Clercq E, Yamamoto N, Pauwels R, Baba M, Schols D, Nakashima H, Balzarini J, Debyser Z, Murrer BA, Schwartz D, Thornton D, Bridger G, Fricker S, Henson G, Abrams M, Picker D. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci USA. 1992;89:5286–90.CrossRefGoogle Scholar
  8. 8.
    De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K, Debyser Z, Rosenwirth B, Peichl P, Datema R, Thornton D, Skerlj R, Gaul F, Admanabhan S, Bridger G, Henson G, Abrams M. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM 3100. Antimicrob Agents Chemother. 1994;38:668–74.CrossRefGoogle Scholar
  9. 9.
    De Clercq E. New developments in anti-HIV chemotherapy. Biochim Biophys Acta. 2002;1587:258–75.CrossRefGoogle Scholar
  10. 10.
    Khan A, Nicholson G, Greenman J, Madden L, McRobbie G, Pannecouque C, De Clercq E, Ullom R, Maples DL, Maples RL, Silversides JD, Hubin TJ, Archibald SJ. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J Am Chem Soc. 2009;131:3416–7.CrossRefGoogle Scholar
  11. 11.
    Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry. 2003;42:710–7.CrossRefGoogle Scholar
  12. 12.
    Hunter TM, McNae IW, Liang X, Bella J, Parsons S, Walkinshaw MD, Sadler PJ. Protein recognition of macrocycles: binding of anti-HIV metallocyclams to lysozyme. Proc Natl Acad Sci USA. 2005;102:2288–92.CrossRefGoogle Scholar
  13. 13.
    Esté JA, Cabrera C, De Clercq E, Struyf S, Van Damme J, Bridger G, Skerlj RT, Abrams MJ, Henson G, Gutierrez A, Clotet B, Schols D. Activity of different bicyclam derivatives against human immunodeficiency virus depends on their interaction with the CXCR4 chemokine receptor. Mol Pharmacol. 1999;55:67–73.Google Scholar
  14. 14.
    Hunter TM, Paisey SJ, Park H-S, Cleghorn L, Parkin A, Parsons S, Sadler PJ. Configurations of metallocyclams and relevance to anti-HIV activity. J Inorg Biochem. 2004;98:713–9.CrossRefGoogle Scholar
  15. 15.
    Bridger GJ, Skerlj RT, Padmanabhan S, Martellucci SA, Henson GW, Abrams MJ, Joao HC, Witvrouw M, De Vreese K, Pauwels R, De Clercq E. Synthesis and structure–activity relationships of phenylenebis(methylene)-linked bis-tetraaza-macrocycles that inhibit human immunodeficiency virus replication. Effect of heteroaromatic linkers on the activity of bicyclams. J Med Chem. 1996;39:109–19.CrossRefGoogle Scholar
  16. 16.
    Valks GC, McRobbie G, Lewis EA, Hubin TJ. Configurationally restricted bismacrocyclic CXCR4 receptor antagonists. J Med Chem. 2006;49:6162–5.CrossRefGoogle Scholar
  17. 17.
    McRobbie G, Valks GC, Empson CJ, Khan A, Silversides JD, Pannecouque C, De Clercq E, Fiddy SG, Bridgeman AJ, Young NA, Archibald SJ. Probing key coordination interactions: configurationally restricted metal activated CXCR4 antagonists. Dalton Trans. 2007;43:5008–18.CrossRefGoogle Scholar
  18. 18.
    Olar R, Badea M, Marinescu D, Calu L, Bucur C. Thermal behaviour of some new complexes with bismacrocyclic ligands as potential biological active species. J Therm Anal Calorim. 2011;105:571–5.CrossRefGoogle Scholar
  19. 19.
    Bucur C, Badea M, Calu L, Marinescu D, Grecu MN, Stanica N, Chifiriuc MC, Olar R. Thermal behaviour of some new complexes with decaaza bismacrocyclic ligand as potential antimicrobial species. J Therm Anal Calorim. 2012;110:235–41.CrossRefGoogle Scholar
  20. 20.
    Bucur C, Korošec RC, Badea M, Calu L, Chifiriuc MC, Grecu N, Stanică N, Marinescu D, Olar R. Investigation of thermal stability, spectral, magnetic, and antimicrobial behavior for new complexes of Ni(II), Cu(II), and Zn(II) with a bismacrocyclic ligand. J Therm Anal Calorim. 2013;113:1287–95.Google Scholar
  21. 21.
    Marutescu L, Limban C, Chifiriuc MC, Missir AV, Chirita IC, Caproiu MT. Studies on the antimicrobial activity of new compounds containing thiourea function. Biointerface Res Appl Chem. 2011;1:236–41.Google Scholar
  22. 22.
    Pavaskar PA, Vimal Patil SS, Furtado I, Salker AV. Synthesis and antimicrobial activity on manganese tetra (n-carbonylacrylic) amine phthalocyanine. Biointerface Res Appl Chem. 2012;2:374–9.Google Scholar
  23. 23.
    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Lazar V. N,N-dimethylbiguanide complexes displaying low cytotoxicity as potential large spectrum antimicrobial agents. Eur J Med Chem. 2010;45:3027–34.CrossRefGoogle Scholar
  24. 24.
    Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  25. 25.
    Robertson MJ, De Iuliis GN, Maeder M, Lawrance GA. Metal-directed synthesis of a chiral acyclic pentaamine and pendant-arm macrocyclic hexaamine derived from an amino acid. Inorg Chim Acta. 2004;357:557–70.CrossRefGoogle Scholar
  26. 26.
    Salavati-Niasari M, Amiri A. Binuclear copper(II) complexes of new bis(macrocyclic) 16-membered pentaaza subunits are linked together by bridging nitrogen of amine: synthesis, characterization and catalytic activity. J Mol Catal A. 2005;235:114–21.CrossRefGoogle Scholar
  27. 27.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.Google Scholar
  28. 28.
    Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.Google Scholar
  29. 29.
    Gispert JR. Coordination chemistry. Weinheim: Wiley-VCH; 2008.Google Scholar
  30. 30.
    Dong Y, Lindoy LF. A three-ring, linked cyclam derivative and its interaction with selected transition and post-transition metal ions. Coord Chem Rev. 2003;245:11–6.CrossRefGoogle Scholar
  31. 31.
    Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.CrossRefGoogle Scholar
  32. 32.
    Tatucu M, Rotaru P, Rau I, Spinu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.CrossRefGoogle Scholar
  33. 33.
    Badea M, Olar R, Marinescu D, Segal E, Rotaru A. Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim. 2007;88:317–21.CrossRefGoogle Scholar
  34. 34.
    Materazzi S, Vecchio S, Wo LW, De Angelis Curtis S. Thermoanalytical studies of imidazole-substituted coordination compounds Mn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. J Therm Anal Calorim. 2011;103:59–64.CrossRefGoogle Scholar
  35. 35.
    Zianna A, Vecchio S, Gdaniec M, Czapik A, Hatzidimitriou A, Lalia-Kantouri M. Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes. J Therm Anal Calorim. 2013;112:455–64.CrossRefGoogle Scholar
  36. 36.
    Bujdosova Z, Gyoryova K, Mudronova D, Hudecova D, Kovarova J. Thermoanalytical investigation and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylates with N-donor ligands. J Therm Anal Calorim. 2012;110:167–76.CrossRefGoogle Scholar
  37. 37.
    Krajníková A, Győryová K, Kovářová J, Hudecová D, Hubáčková J, El-Dien FN, Koman M. Thermoanalytical, spectral and biological study 4-bromobenzoatozinc(II) complexes containing bioactive organic ligands. J Therm Anal Calorim. 2012;110:177–85.CrossRefGoogle Scholar
  38. 38.
    Carvalho CT, Caires FJ, Lima LS, Ionashiro M. Thermal investigation of solid 2-methoxycinnamylidene pyruvate of some bivalent transition metal ions. J Therm Anal Calorim. 2012;107:863–8.CrossRefGoogle Scholar
  39. 39.
    McCutcheon AR, Ellis SM, Hancock RE, Towers GH. Antibiotic screening of medicinal plants of the British Columbian native peoples. J Ethnopharmacol. 1992;37:213–23.CrossRefGoogle Scholar
  40. 40.
    Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Coord Chem Rev. 1971;71:525–616.CrossRefGoogle Scholar
  41. 41.
    Sangster J. Octanol–water partition coefficients of simple organic compounds. J Phys Chem. 1989;18:1111–227.Google Scholar
  42. 42.
    Comer J, Tam K. Lipophylicity profiles: theory and measurement. In: Testa B, Van de Waterbeemd H, Folkers G, Guy R, editors. Pharmacokinetic optimization in drug research. Zürich: Wiley-VCH Publishers; 2001. p. 275–304.CrossRefGoogle Scholar
  43. 43.
    Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Cristina Bucur
    • 1
  • Mihaela Badea
    • 1
  • Mariana Carmen Chifiriuc
    • 2
  • Coralia Bleotu
    • 3
  • Emilia Elena Iorgulescu
    • 4
  • Irinel Adriana Badea
    • 4
  • Maria Nicoleta Grecu
    • 5
  • Veronica Lazăr
    • 2
  • Oana-Irina Patriciu
    • 6
  • Dana Marinescu
    • 1
  • Rodica Olar
    • 1
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania
  3. 3.Stefan S Nicolau Institute of VirologyBucharestRomania
  4. 4.Department of Analytical Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  5. 5.National Institute of Materials PhysicsMăgurele-IlfovRomania
  6. 6.Chemical and Food Engineering Department, Faculty of Engineering“Vasile Alecsandri” University of BacauBacauRomania

Personalised recommendations