Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 3, pp 2447–2455 | Cite as

Synthesis and characterisation of Ni(II), Cu(II), and Zn(II) complexes with an acyclic Mannich base functionalised with thioglycolate moiety

  • Anca Dumbravă
  • Rodica Olar
  • Mihaela Badea
  • Maria Nicoleta Grecu
  • Florentina Pătrascu
  • Luminita Măruţescu
  • Nicolae Stănică
Article

Abstract

New complexes ML(CNS)·nH2O [M = Ni, n = 0.5; M = Cu, n = 4.5; M = Zn, n = 0.5, HL: 6-mercapto-(1,4,8,11-tetraazaundecanyl)-6-carboxylic acid)] have been synthesised, chemical analysed, and characterised by different spectroscopic techniques (IR, UV–Vis–NIR, 1H NMR, EPR, ESI–MS), and magnetic measurements. Based on the IR spectra a dinuclear structure with the 1,3-CSN coordination was proposed for Ni(II) and Cu(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. According to TG, DTG and DTA curves the thermal transformations are complex processes, including dehydration, Mannich base oxidative degradation and thiocyanate decomposition. The final product of decomposition is the most stable metallic oxide, as XRD data indicates. The new complexes were also screened for their microbicidal and antibiofilm properties.

Keywords

Tetraazaundecane derivative Complex Thioglycolic acid One-pot synthesis Thermal stability Antibacterial activity 

Notes

Acknowledgements

Support of the EU (ERDF) and Romanian Government, that allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—Nr. 19/01.03.2009, is gratefully acknowledged.

References

  1. 1.
    Lawrance GA, Maeder M, Wilkes EN. Metal-directed macrocyclization reactions involving formaldehyde, amines and mono- or bi-functional methylene compounds. Rev Inorg Chem. 1993;13:199–232.CrossRefGoogle Scholar
  2. 2.
    Negm NA, Morsy SMI, Said MM. Biocidal activity of some Mannich base cationic derivatives. Bioorg Med Chem. 2005;13:5921–6.CrossRefGoogle Scholar
  3. 3.
    Ashok M, Holla BS, Poojary B. Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety. Eur J Med Chem. 2007;42:1095–101.CrossRefGoogle Scholar
  4. 4.
    Joshi S, Manikpuri AD, Tiwari P. Synthesis and biological study of medicinally important Mannich bases derived from 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a pentahydroxy naphthacene carboxamide. Bioorg Med Chem Lett. 2007;17:645–8.CrossRefGoogle Scholar
  5. 5.
    Plech T, Wujec M, Siwek A, Kosikowska U, Malm A. Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety. Eur J Med Chem. 2011;46:241–8.CrossRefGoogle Scholar
  6. 6.
    Ali MA, Shaharyar M. Oxadiazole Mannich bases: synthesis and antimycobacterial activity. Bioorg Med Chem Lett. 2007;17:3314–6.CrossRefGoogle Scholar
  7. 7.
    Sriram D, Yogeeswari P, Reddy SP. Synthesis of pyrazinamide Mannich bases and its antitubercular properties. Bioorg Med Chem Lett. 2006;16:2113–6.CrossRefGoogle Scholar
  8. 8.
    Fillion H, Porte M, Bartoli MH, Bouaziz Z, Berlion M, Villard J. Synthesis of Mannich bases of 5-hydroxynaphthalene-1,8-carbolactone as potential antifungal or antitumor agents. Chem Pharm Bull. 1991;39:493–5.CrossRefGoogle Scholar
  9. 9.
    Mazzei M, Nieddu E, Miele M, Balbi A, Ferrone M, Fermeglia M, Mazzei MT, Pricl S, La Colla P, Marongiu F, Ibba C, Loddo R. Activity of Mannich bases of 7-hydroxycoumarin against Flaviviridae. Bioorg Med Chem. 2008;16:2591–605.CrossRefGoogle Scholar
  10. 10.
    Chipeleme A, Gut J, Rosenthal PJ, Chibale K. Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorg Med Chem. 2007;15:273–82.CrossRefGoogle Scholar
  11. 11.
    Rodrigues ALS, Rosa JM, Gadotti VM, Goulart EC, Santos MM, Silva AV, Sehnem B, Rosa LS, Goncalves RM, Correa R, Santos ARS. Antidepressant-like and antinociceptive-like actions of 4-(4′-chlorophenyl)-6-(4″ -methylphenyl)-2-hydrazinepyrimidine Mannich base in mice. Pharmacol Biochem Behav. 2005;82:156–62.CrossRefGoogle Scholar
  12. 12.
    Vashishtha SC, Zello GA, Nienaber KH, Balzarini J, De Clercq E, Stables JP, Dimmock JR. Cytotoxic and anticonvulsant aryloxyaryl Mannich bases and related compounds. Eur J Med Chem. 2004;39:27–35.CrossRefGoogle Scholar
  13. 13.
    Ivanova Y, Momekov G, Petrov O, Karaivanova M, Kalcheva V. Cytotoxic Mannich bases of 6-(3-aryl-2-propenoyl)2(3H)-benzoxazolones. Eur J Med Chem. 2007;42:1382–7.CrossRefGoogle Scholar
  14. 14.
    Borenstein MR, Doukas PH. Anticonvulsant activity of indanylspirosuccinimide Mannich bases. J Pharm Sci. 1987;76:300–2.CrossRefGoogle Scholar
  15. 15.
    Muthumani P, Neckmohammed, Meera R, Venkataraman S, Chidambaranathan N, Devi P, Suresh Kumar CA. Synthesis and evaluation of anticonvulsant and antimicrobial activities of some Mannich bases of substituted aminophenol and acetophenone. Int J Pharm. Biomed Res. 2010;1:78–86.Google Scholar
  16. 16.
    Al-Jeboori MJ, Abdul-Ghani AJ, Al-Karawi AJ. Synthesis and structural studies of new Mannich base ligands and their metal complexes. Trans Met Chem. 2008;33:925–30.CrossRefGoogle Scholar
  17. 17.
    Sathya D, Senthil Kumaran J, Priya S, Jayachandramani N, Mahalakshmi S, Emelda AR. Synthesis, Characterization and in vitro antimicrobial studies of some transition metal complexes with a new Mannich base N-(1-morpholinosalicylyl) acetamide. Int J ChemTech Res. 2011;3:248–52.Google Scholar
  18. 18.
    Abdulghani AJ, Abbas NM. Synthesis, characterization and biological activity study of new Schiff and Mannich bases and some metal complexes derived from isatin and dithiooxamide. Bioinorg Chem Appl. 2011;2011:706262. doi: 10.1155/2011/706262.CrossRefGoogle Scholar
  19. 19.
    Roe SP, Hill JO. An X-ray photoelectron spectroscopic study of some copper(II) tetraaza complexes. Polyhedron. 1986;5:723–30.CrossRefGoogle Scholar
  20. 20.
    House DA, Yang D. Chromium(III) complexes of the linear tetraamine 1,4,8,11-tetraazaundecane (entnen). Synthesis, configurational assignments, optical activity and hydrolysis kinetics. Inorg Chim Acta. 1983;74:179–89.CrossRefGoogle Scholar
  21. 21.
    Cavichiolo LJ, Hörner M, Visentin LC, Nunes FS. Crystal structure of 2,3,9,10-tetramethyl-1,4,8,11-tetraazaundecane-1,3,8,10-tetraen-11-ol-1-olatodicyanocobalt (III) monohydrate. Anal Sci. 2007;23:163–4.Google Scholar
  22. 22.
    Lawrance GA, Maeder M, Wilkes EN. Metal-directed macrocyclization reactions involving formaldehyde, amines and mono- or bi-functional methylene compounds. Rev Inorg Chem. 1993;13:199–232.CrossRefGoogle Scholar
  23. 23.
    Wainwright KP. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. Coord Chem Rev. 1997;166:35–90.CrossRefGoogle Scholar
  24. 24.
    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.CrossRefGoogle Scholar
  25. 25.
    Costisor O, Linert W. Metal mediated template synthesis of ligands. New Jersey: Word Scientific; 2004.CrossRefGoogle Scholar
  26. 26.
    Shevchenko DV, Setrusenko SR, Kokozay VN, Svoboda I, Kožišek J. Unexpected Cu(II)Zn(II) amine-imine complex obtained by template reaction under “direct synthesis” conditions. Inorg Chem Commun. 2005;8:665–8.CrossRefGoogle Scholar
  27. 27.
    Zhou JF, Zhu FX, Zhu HQ, Zhu YL. A facile synthesis of 3-aryl-2-mercaptoacrylic acid under microwave irradiation. ARKIVOC. 2007;21:213–7.CrossRefGoogle Scholar
  28. 28.
    Deacon GB, Philips JR. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  29. 29.
    Zeleňák V, Vargová Z, Györyová K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta Part A. 2007;66:262–72.CrossRefGoogle Scholar
  30. 30.
    Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley; 1986.Google Scholar
  31. 31.
    Jóna E, Lajdová L, Kvasnicová L, Lendvayová S, Pajtášova M, Ondrušová D, Lizák P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands Part III. Thermal decomposition and infrared spectra of thiocyanato Mg(II) complexes with 2-hydroxypyridine, quinoline, and quinoxaline. J Therm Anal Calorim. 2011;104:817–21.CrossRefGoogle Scholar
  32. 32.
    Smith R, Huskens D, Daelemans D, Mewis RE, Garcia CD, Cain AN, Carder Freeman TN, Pannecouque C, De Clercq E, Schols D, Hubin TJ, Archibald SJ. CXCR4 chemokine receptor antagonists: nickel(II) complexes of configurationally restricted macrocycles. Dalton Trans. 2012;41:11369–77.CrossRefGoogle Scholar
  33. 33.
    Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.Google Scholar
  34. 34.
    Gispert JB. Coordination chemistry. Weinheim: Wiley; 2008.Google Scholar
  35. 35.
    Hathaway BJ. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct Bond. 1984;57:55–118.CrossRefGoogle Scholar
  36. 36.
    Abd El-Halim HF, Nour El-Dien FA, Mohamed GG, Mohamed NA. Synthesis, spectroscopic, thermal characterization, and antimicrobial activity of miconazole drug and its metal complexes. J Therm Anal Calorim. 2012;109:883-92.Google Scholar
  37. 37.
    Badea M, Iosub E, Chifiriuc CM, Marutescu L, Iorgulescu EE, Lazar V, Marinescu D, Bleotu C, Olar R. Thermal, spectral, electrochemical and biologic characterisation of new Pd(II) complexes with ligands bearing biguanide moieties. J Therm Anal Calorim. 2013;111:1753–61.CrossRefGoogle Scholar
  38. 38.
    Oldham C. Carboxylates, squarates and related species. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. Oxford: Pergamon Press; 1987.Google Scholar
  39. 39.
    Hathaway BJ. Oxyanions. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. Oxford: Pergamon Press; 1986.Google Scholar
  40. 40.
    Ptaszyñski B, Skiba E, Krystek J. Thermal decomposition of Bi(III), Cd(II), Pb(II) and Cu(II) thiocyanates. J Therm Anal Calorim. 2001;65:231–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Anca Dumbravă
    • 1
  • Rodica Olar
    • 2
  • Mihaela Badea
    • 2
  • Maria Nicoleta Grecu
    • 3
  • Florentina Pătrascu
    • 2
  • Luminita Măruţescu
    • 4
  • Nicolae Stănică
    • 5
  1. 1.Department of Chemistry and Chemical EngineeringOvidius UniversityConstantaRomania
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  3. 3.National Institute of Materials Physics Bucharest-MagureleMagurele-IlfovRomania
  4. 4.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania
  5. 5.“Ilie Murgulescu” Physical Chemistry InstituteRomanian AcademyBucharestRomania

Personalised recommendations