Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis and characterisation of Ni(II), Cu(II), and Zn(II) complexes with an acyclic Mannich base functionalised with thioglycolate moiety

  • 203 Accesses


New complexes ML(CNS)·nH2O [M = Ni, n = 0.5; M = Cu, n = 4.5; M = Zn, n = 0.5, HL: 6-mercapto-(1,4,8,11-tetraazaundecanyl)-6-carboxylic acid)] have been synthesised, chemical analysed, and characterised by different spectroscopic techniques (IR, UV–Vis–NIR, 1H NMR, EPR, ESI–MS), and magnetic measurements. Based on the IR spectra a dinuclear structure with the 1,3-CSN coordination was proposed for Ni(II) and Cu(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. According to TG, DTG and DTA curves the thermal transformations are complex processes, including dehydration, Mannich base oxidative degradation and thiocyanate decomposition. The final product of decomposition is the most stable metallic oxide, as XRD data indicates. The new complexes were also screened for their microbicidal and antibiofilm properties.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Lawrance GA, Maeder M, Wilkes EN. Metal-directed macrocyclization reactions involving formaldehyde, amines and mono- or bi-functional methylene compounds. Rev Inorg Chem. 1993;13:199–232.

  2. 2.

    Negm NA, Morsy SMI, Said MM. Biocidal activity of some Mannich base cationic derivatives. Bioorg Med Chem. 2005;13:5921–6.

  3. 3.

    Ashok M, Holla BS, Poojary B. Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety. Eur J Med Chem. 2007;42:1095–101.

  4. 4.

    Joshi S, Manikpuri AD, Tiwari P. Synthesis and biological study of medicinally important Mannich bases derived from 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a pentahydroxy naphthacene carboxamide. Bioorg Med Chem Lett. 2007;17:645–8.

  5. 5.

    Plech T, Wujec M, Siwek A, Kosikowska U, Malm A. Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety. Eur J Med Chem. 2011;46:241–8.

  6. 6.

    Ali MA, Shaharyar M. Oxadiazole Mannich bases: synthesis and antimycobacterial activity. Bioorg Med Chem Lett. 2007;17:3314–6.

  7. 7.

    Sriram D, Yogeeswari P, Reddy SP. Synthesis of pyrazinamide Mannich bases and its antitubercular properties. Bioorg Med Chem Lett. 2006;16:2113–6.

  8. 8.

    Fillion H, Porte M, Bartoli MH, Bouaziz Z, Berlion M, Villard J. Synthesis of Mannich bases of 5-hydroxynaphthalene-1,8-carbolactone as potential antifungal or antitumor agents. Chem Pharm Bull. 1991;39:493–5.

  9. 9.

    Mazzei M, Nieddu E, Miele M, Balbi A, Ferrone M, Fermeglia M, Mazzei MT, Pricl S, La Colla P, Marongiu F, Ibba C, Loddo R. Activity of Mannich bases of 7-hydroxycoumarin against Flaviviridae. Bioorg Med Chem. 2008;16:2591–605.

  10. 10.

    Chipeleme A, Gut J, Rosenthal PJ, Chibale K. Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorg Med Chem. 2007;15:273–82.

  11. 11.

    Rodrigues ALS, Rosa JM, Gadotti VM, Goulart EC, Santos MM, Silva AV, Sehnem B, Rosa LS, Goncalves RM, Correa R, Santos ARS. Antidepressant-like and antinociceptive-like actions of 4-(4′-chlorophenyl)-6-(4″ -methylphenyl)-2-hydrazinepyrimidine Mannich base in mice. Pharmacol Biochem Behav. 2005;82:156–62.

  12. 12.

    Vashishtha SC, Zello GA, Nienaber KH, Balzarini J, De Clercq E, Stables JP, Dimmock JR. Cytotoxic and anticonvulsant aryloxyaryl Mannich bases and related compounds. Eur J Med Chem. 2004;39:27–35.

  13. 13.

    Ivanova Y, Momekov G, Petrov O, Karaivanova M, Kalcheva V. Cytotoxic Mannich bases of 6-(3-aryl-2-propenoyl)2(3H)-benzoxazolones. Eur J Med Chem. 2007;42:1382–7.

  14. 14.

    Borenstein MR, Doukas PH. Anticonvulsant activity of indanylspirosuccinimide Mannich bases. J Pharm Sci. 1987;76:300–2.

  15. 15.

    Muthumani P, Neckmohammed, Meera R, Venkataraman S, Chidambaranathan N, Devi P, Suresh Kumar CA. Synthesis and evaluation of anticonvulsant and antimicrobial activities of some Mannich bases of substituted aminophenol and acetophenone. Int J Pharm. Biomed Res. 2010;1:78–86.

  16. 16.

    Al-Jeboori MJ, Abdul-Ghani AJ, Al-Karawi AJ. Synthesis and structural studies of new Mannich base ligands and their metal complexes. Trans Met Chem. 2008;33:925–30.

  17. 17.

    Sathya D, Senthil Kumaran J, Priya S, Jayachandramani N, Mahalakshmi S, Emelda AR. Synthesis, Characterization and in vitro antimicrobial studies of some transition metal complexes with a new Mannich base N-(1-morpholinosalicylyl) acetamide. Int J ChemTech Res. 2011;3:248–52.

  18. 18.

    Abdulghani AJ, Abbas NM. Synthesis, characterization and biological activity study of new Schiff and Mannich bases and some metal complexes derived from isatin and dithiooxamide. Bioinorg Chem Appl. 2011;2011:706262. doi:10.1155/2011/706262.

  19. 19.

    Roe SP, Hill JO. An X-ray photoelectron spectroscopic study of some copper(II) tetraaza complexes. Polyhedron. 1986;5:723–30.

  20. 20.

    House DA, Yang D. Chromium(III) complexes of the linear tetraamine 1,4,8,11-tetraazaundecane (entnen). Synthesis, configurational assignments, optical activity and hydrolysis kinetics. Inorg Chim Acta. 1983;74:179–89.

  21. 21.

    Cavichiolo LJ, Hörner M, Visentin LC, Nunes FS. Crystal structure of 2,3,9,10-tetramethyl-1,4,8,11-tetraazaundecane-1,3,8,10-tetraen-11-ol-1-olatodicyanocobalt (III) monohydrate. Anal Sci. 2007;23:163–4.

  22. 22.

    Lawrance GA, Maeder M, Wilkes EN. Metal-directed macrocyclization reactions involving formaldehyde, amines and mono- or bi-functional methylene compounds. Rev Inorg Chem. 1993;13:199–232.

  23. 23.

    Wainwright KP. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. Coord Chem Rev. 1997;166:35–90.

  24. 24.

    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.

  25. 25.

    Costisor O, Linert W. Metal mediated template synthesis of ligands. New Jersey: Word Scientific; 2004.

  26. 26.

    Shevchenko DV, Setrusenko SR, Kokozay VN, Svoboda I, Kožišek J. Unexpected Cu(II)Zn(II) amine-imine complex obtained by template reaction under “direct synthesis” conditions. Inorg Chem Commun. 2005;8:665–8.

  27. 27.

    Zhou JF, Zhu FX, Zhu HQ, Zhu YL. A facile synthesis of 3-aryl-2-mercaptoacrylic acid under microwave irradiation. ARKIVOC. 2007;21:213–7.

  28. 28.

    Deacon GB, Philips JR. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

  29. 29.

    Zeleňák V, Vargová Z, Györyová K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta Part A. 2007;66:262–72.

  30. 30.

    Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley; 1986.

  31. 31.

    Jóna E, Lajdová L, Kvasnicová L, Lendvayová S, Pajtášova M, Ondrušová D, Lizák P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands Part III. Thermal decomposition and infrared spectra of thiocyanato Mg(II) complexes with 2-hydroxypyridine, quinoline, and quinoxaline. J Therm Anal Calorim. 2011;104:817–21.

  32. 32.

    Smith R, Huskens D, Daelemans D, Mewis RE, Garcia CD, Cain AN, Carder Freeman TN, Pannecouque C, De Clercq E, Schols D, Hubin TJ, Archibald SJ. CXCR4 chemokine receptor antagonists: nickel(II) complexes of configurationally restricted macrocycles. Dalton Trans. 2012;41:11369–77.

  33. 33.

    Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.

  34. 34.

    Gispert JB. Coordination chemistry. Weinheim: Wiley; 2008.

  35. 35.

    Hathaway BJ. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct Bond. 1984;57:55–118.

  36. 36.

    Abd El-Halim HF, Nour El-Dien FA, Mohamed GG, Mohamed NA. Synthesis, spectroscopic, thermal characterization, and antimicrobial activity of miconazole drug and its metal complexes. J Therm Anal Calorim. 2012;109:883-92.

  37. 37.

    Badea M, Iosub E, Chifiriuc CM, Marutescu L, Iorgulescu EE, Lazar V, Marinescu D, Bleotu C, Olar R. Thermal, spectral, electrochemical and biologic characterisation of new Pd(II) complexes with ligands bearing biguanide moieties. J Therm Anal Calorim. 2013;111:1753–61.

  38. 38.

    Oldham C. Carboxylates, squarates and related species. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. Oxford: Pergamon Press; 1987.

  39. 39.

    Hathaway BJ. Oxyanions. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. Oxford: Pergamon Press; 1986.

  40. 40.

    Ptaszyñski B, Skiba E, Krystek J. Thermal decomposition of Bi(III), Cd(II), Pb(II) and Cu(II) thiocyanates. J Therm Anal Calorim. 2001;65:231–9.

Download references


Support of the EU (ERDF) and Romanian Government, that allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—Nr. 19/01.03.2009, is gratefully acknowledged.

Author information

Correspondence to Rodica Olar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dumbravă, A., Olar, R., Badea, M. et al. Synthesis and characterisation of Ni(II), Cu(II), and Zn(II) complexes with an acyclic Mannich base functionalised with thioglycolate moiety. J Therm Anal Calorim 115, 2447–2455 (2014).

Download citation


  • Tetraazaundecane derivative
  • Complex
  • Thioglycolic acid
  • One-pot synthesis
  • Thermal stability
  • Antibacterial activity