Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 587–593 | Cite as

Thermal analysis of phase transitions in perovskite electroceramics

  • S. E. Young
  • H. Z. Guo
  • C. Ma
  • M. R. Kessler
  • X. TanEmail author


Perovskite oxide ceramics have found wide applications in energy storage capacitors, electromechanical transducers, and infrared imaging devices due to their unique dielectric, piezoelectric, pyroelectric, and ferroelectric properties. These functional properties are intimately related to the complex displacive phase transitions that readily occur. In this study, these solid–solid phase transitions are characterized with dielectric measurements, dynamic mechanical analysis, thermomechanical analysis, and differential scanning calorimetry in an antiferroelectric lead-containing composition, Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3, and in a relaxor ferrielectric lead-free composition, (Bi1/2Na1/2)0.93Ba0.07TiO3. The (Bi1/2Na1/2)0.93Ba0.07TiO3 ceramic develops strong piezoelectricity through electric field-induced phase transitions during the poling process. The combined thermal analysis techniques clearly reveal the differences in unpoled and poled ceramics.


Antiferroelectrics Lead-free Phase transition Thermal analysis DSC DMA TMA 



This work was supported by the National Science Foundation (NSF) through Grant CMMI-1027873.


  1. 1.
    Basic research needs for electrical energy storage. U.S. DOE Workshop Report (2007). Accessed 14 Mar 2013.
  2. 2.
    Dougherty JP (1996) Cardiac defibrillator with high energy storage antiferroelectric capacitor. US Patent 5545184.Google Scholar
  3. 3.
    Gachigi KW (1997) Electrical energy storage in antiferroelectric-ferroelectric phase switching chemically modified lead zirconate ceramics. PhD dissertation, Pennsylvania State University.Google Scholar
  4. 4.
    Kwon S, Hackenberger W, Alberta E, Furman E, Lanagan M. Nonlinear dielectric ceramics and their applications to capacitors and tunable dielectrics. IEEE Electr Insul Mag. 2011;27(2):43–55.CrossRefGoogle Scholar
  5. 5.
    Berlincourt D, Krueger H, Jaffe B. Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids. 1964;25:659–74.CrossRefGoogle Scholar
  6. 6.
    Viehland D, Forst D, Xu Z, Li J. Incommensurately modulated polar structures in antiferroelectric Sn-modified lead zirconate titanate: the modulated structure and its influences on electrically induced polarizations and strains. J Am Ceram Soc. 1995;78:2101–12.CrossRefGoogle Scholar
  7. 7.
    He H, Tan X. Raman spectroscopy study of the phase transitions in Pb0.99Nb0.02[(Zr0.57Sn0.43)1-yTi0y]0.98O3. J Phys: Condens Matter. 2007;19:136003/1–13.Google Scholar
  8. 8.
    He H, Tan X. Electric field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTi0y]0.98O3. Phys Rev B. 2005;72:024102/1–10.Google Scholar
  9. 9.
    Frederick J, Tan X, Jo W. Strains and polarization during antiferroelectric-ferroelectric phase switching in Pb0.99Nb0.02[(Zr0.57Sn0.43)1-yTi0y]0.98O3 ceramics. J Am Ceram Soc. 2011;94:1149–55.CrossRefGoogle Scholar
  10. 10.
    Tan X, Ma C, Frederick J, Beckman S, Webber K. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J Am Ceram Soc. 2011;94:4091–107.CrossRefGoogle Scholar
  11. 11.
    Tan X, Frederick J, Ma C, Jo W, Rödel J. Can an electric field induce an antiferroelectric phase out of a ferroelectric phase? Phys Rev Lett. 2010;105:255702/1–4.Google Scholar
  12. 12.
    Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rödel J. Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)1−yTi0y]0.98O3. Phys Rev B. 2010;81:014103/1–5.Google Scholar
  13. 13.
    Young SE, Zhang JY, Hong W, Tan X. Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. J Appl Phys. 2013;113:054101/1–6.CrossRefGoogle Scholar
  14. 14.
    Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys. 1991;30(9B):2236–9.CrossRefGoogle Scholar
  15. 15.
    Rödel J, Jo W, Seifert K, Anton EM, Granzow T, Damjanovic D. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92:1153–77.CrossRefGoogle Scholar
  16. 16.
    Acosta M, Zang JD, Jo W, Rödel J. High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J Eur Ceram Soc. 2012;32:4327–34.CrossRefGoogle Scholar
  17. 17.
    Ma C, Tan X. Phase diagram of unpoled lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. Solid State Commun. 2010;150:1497–500.CrossRefGoogle Scholar
  18. 18.
    Ma C, Tan X, Dul’kin E, Roth M. Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. J Appl Phys. 2010;108:104105/1–8.Google Scholar
  19. 19.
    Ma C, Guo HZ, Beckman SP, Tan X. Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoelectrics. Phys Rev Lett. 2012;109:107602/1–5.Google Scholar
  20. 20.
    Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Marietta: Adademic Press; 1971.Google Scholar
  21. 21.
    De La Rubia MA, Alonso RE, DeFrutos J, Lopez-Garcia AR. Phase transitions in PbTixHf1−xO3 determined by thermal analysis and impedance spectroscopy. J Therm Anal Calorim. 2009;98:793–9.CrossRefGoogle Scholar
  22. 22.
    Roy M, Dave P, Barbar SK, Jangid S, Phase DM, Awasthi AM. X-ray, SEM, and DSC studies of ferroelectric Pb1−xBaxTiO3 ceramics. J Therm Anal Calorim. 2010;101:833–7.CrossRefGoogle Scholar
  23. 23.
    Yang P, Payne DA. Thermal stability of field-forced and field-assisted antiferroelectric-ferroelectric phase transitions in Pb(Zr, Sn, Ti)O3. J Appl Phys. 1992;71:1361–7.CrossRefGoogle Scholar
  24. 24.
    Wu C, Wang X, Yao X. Comparative study on the phase transitions in PZT-based ceramics by mechanical and dielectric analyses. Ceram Int. 2012;38S:S13–6.CrossRefGoogle Scholar
  25. 25.
    Zheng XC, Zheng GP, Lin Z, Jiang ZY. Thermal and dynamic mechanical analyses on Bi0.5Na0.5TiO3–BaTiO3 ceramics synthesized with citrate method. Ceram Int. 2013;39:1233–40.CrossRefGoogle Scholar
  26. 26.
    Mendes SF, Costa CM, Sencadas V, Pereira M, Wu A, Vilarinho PM, Gregorio R, Lanceros-Méndez S. Thermal degradation of Pb(Zr0.53Ti0.47)O3/poly(vinylidene fluoride) composites as a function of ceramic grain size and concentration. J Therm Anal Calorim. 2013;. doi: 10.1007/s10973-012-2918-x.Google Scholar
  27. 27.
    Melo D, Marinho RMM, Vieira FTG, Lima SJG, Longo E, Souza AG, Maia AS, Santos IMG. Influence of Cu(II) in the SrSnO3 crystallization. J Therm Anal Calorim. 2011;106:513–7.CrossRefGoogle Scholar
  28. 28.
    Huang JW, Su P, Wu WW, Li YN, Wu XH, Tao L. Preparation of nanocrystalline BiFeO3and kinetics of thermal process of precursor. J Therm Anal Calorim. 2013;111:1057–65.CrossRefGoogle Scholar
  29. 29.
    Tan X, Shang JK. In-situ transmission electron microscopy study of electric field-induced grain boundary cracking in lead zirconate titanate. Philos Mag A. 2002;82:1463–78.CrossRefGoogle Scholar
  30. 30.
    Tan X, He H, Shang JK. In situ TEM studies of electric field-induced phenomena in ferroelectrics. J Mater Res. 2005;20:1641–53.CrossRefGoogle Scholar
  31. 31.
    Mano JF, Lanceros-Mendez S, Nunes AM, Dionisio M. Temperature calibration in dielectric measurements. J Therm Anal Calorim. 2001;65:37–49.CrossRefGoogle Scholar
  32. 32.
    Anton EM, Jo W, Damjanovic D, Rödel J. Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys. 2011;110:094108/1–14.CrossRefGoogle Scholar
  33. 33.
    Daniels JE, Jo W, Rödel J, Jones JL. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric ceramic. Appl Phys Lett. 2009;95:032904/1–3.CrossRefGoogle Scholar
  34. 34.
    Yao Y, Yang Y, Ren S, Zhou C, Li L, Ren XB. Ferroelastic and strain glass transition in (1−x)(Bi0.5Na0.5)TiO3–xBaTiO3 solid solution. EPL. 2012;100:17004/1–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • S. E. Young
    • 1
  • H. Z. Guo
    • 1
  • C. Ma
    • 1
  • M. R. Kessler
    • 1
  • X. Tan
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations