Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1669–1678 | Cite as

Unified isothermal and non-isothermal modelling of neat PEEK crystallization

  • Emeline Bessard
  • Olivier De Almeida
  • Gérard Bernhart


A differential generalized Avrami’s law is used to model crystallization kinetic of PEEK in considering that PEEK crystallization results from the contribution of two distinct mechanisms. The form of this equation allows to predict with good accuracy both isothermal and non-isothermal crystallization kinetics. Nevertheless, isothermal model parameters are not entirely satisfactory for predicting non-isothermal crystallization and the identification of kinetic parameters is needed for both isothermal and non-isothermal cases. The results show that the Avrami exponents and Arrhenius activation energies remain constant for both conditions and therefore suggest that these parameters are only material dependent. On the other hand, the other kinetic parameters depend on the crystallization condition and vary with temperature and/or cooling rate.


PEEK Crystallization Kinetic modelling Differential scanning calorimetry (DSC) 



This work was carried out as part of the cooperative INMAT2 project and was financially supported by the Fond Unique Interministériel. The authors wish to thank the project partners for their contribution to the present work. Further thanks are addressed to the technicians of the Institut Clément Ader for their assistance in the experiments.


  1. 1.
    Gao SL, Kim JK. Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion. Comp Part A. 2000;31:517–30.CrossRefGoogle Scholar
  2. 2.
    Gao SL, Kim JK. Cooling rate influences in carbon fibre/PEEK composites. Part III: Impact damage performance. Comp Part A. 2001;32:775–85.CrossRefGoogle Scholar
  3. 3.
    Rudolf R, Mitschang P, Neitzel M. Induction heating of continuous carbon-fibre-reinforced thermoplastics. Comp Part A. 2000;31:1191–202.CrossRefGoogle Scholar
  4. 4.
    Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3.CrossRefGoogle Scholar
  5. 5.
    Hoffman JD, Lauritzen JI. Crystallization of bulk polymers with chain folding—theory of growth of lamellar spherulites. J Res Nat Bur Stand. 1961;65A:297–336.CrossRefGoogle Scholar
  6. 6.
    Nakamura K, Watanabe T, Katayama K. Some aspects of nonisothermal crystallization of polymers. I. relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci. 1972;16:1077–91.CrossRefGoogle Scholar
  7. 7.
    Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization. Colloid Polym Sci. 1974;252:433–47.CrossRefGoogle Scholar
  8. 8.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.CrossRefGoogle Scholar
  9. 9.
    Patel RM, Sprueill JE. Crystallization kinetics during polymer processing: analysis of available approaches for process modeling. Polym Eng Sci. 1991;31:730–8.CrossRefGoogle Scholar
  10. 10.
    Le Goff R, Poutot G. Study and modeling of heat transfer during the solidification of semi-crystalline polymers. Int J Heat Mass Tran. 2005;48:5417–30.CrossRefGoogle Scholar
  11. 11.
    Malkin AY, Beghishev VP, Keapin IA. General treatment of polymer crystallization kinetics. Part I. A new macrokinetic equation and its experimental verification. Polym Eng Sci. 1984;24:1396–401.CrossRefGoogle Scholar
  12. 12.
    Supaphol P. Application of the Avrami, Tobin, Malkin and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim Acta. 2001;370:37–48.CrossRefGoogle Scholar
  13. 13.
    Lee Y, Porter RS. Double-melting behavior of poly(ether ether ketone). Macromolecular. 1987;20:1336–41.CrossRefGoogle Scholar
  14. 14.
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer. 1983;24:953–8.CrossRefGoogle Scholar
  15. 15.
    Latimmer MP, Hobbs JK, Hill MJ. On the origin of the multiple endotherms in PEEK. Polymer. 1992;33:3971–3.CrossRefGoogle Scholar
  16. 16.
    Verma RK, Velikov V, Kander RG. SAXS studies of lamellar level morphological changes during crystallization and melting in PEEK. Polymer. 1996;37:5357–65.CrossRefGoogle Scholar
  17. 17.
    Bessard E, De Almeida O, Bernhart G. Melt state behaviour of PEEK and processing window interpretation for fast compression moulding process. In: Chinesta F, Chastel Y, El Mansori M, editors. AIP conference proceedings. Paris: AMPT; 2011.Google Scholar
  18. 18.
    Cheng SZD, Cao MY, Wunderlich B. Glass transition and melting of PEEK. Macromolecular. 1986;19:1868–76.CrossRefGoogle Scholar
  19. 19.
    Basset DC, Olley RH, Al Raheil IAM. On crystallization phenomena in PEEK. Polymer. 1988;29:1745–54.CrossRefGoogle Scholar
  20. 20.
    Velisaris C, Seferis J. Crystallization kinetics of polyetheretherketone (PEEK) matrices. Polym Eng Sci. 1986;26:1574–81.CrossRefGoogle Scholar
  21. 21.
    Cebe P. Application of the parallel Avrami model to crystallization of PEEK. Polym Eng Sci. 1988;28:1192–7.CrossRefGoogle Scholar
  22. 22.
    Tan S, Su A, Luo J. Crystallization kinetics of poly(ether ether ketone) (PEEK) from its metastable melt. Polymer. 1999;40:1223–31.CrossRefGoogle Scholar
  23. 23.
    Chao SC, Chen M, Chung CT. Isothermal crystallization and melting behavior of short carbon fiber reinforced poly(ether ether ketone) composites. J Polym Res. 1998;5:221–6.CrossRefGoogle Scholar
  24. 24.
    Wei CL, Chen M, Yu FE. Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone). Polymer. 2003;44:8185–93.CrossRefGoogle Scholar
  25. 25.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  26. 26.
    Supaphol P, Spruiell JE. Application of the Avrami, Tobin, Malkin and simultaneous Avrami macrokinetic models to isothermal crystallization of syndiotactic polypropylenes. J Macromol Sci. 2000;39:257–77.Google Scholar
  27. 27.
    Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  28. 28.
    Trende A, Astrom BT, Wöginger A. Modelling of heat transfer in thermoplastic composites manufacturing: double-belt press lamination. Comp Part A. 1999;30:935–43.CrossRefGoogle Scholar
  29. 29.
    Cebe P. Non-isothermal crystallization of poly(ether ether ketone) aromatic polymer composite. Polym Comp. 1988;9:271–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Emeline Bessard
    • 1
  • Olivier De Almeida
    • 1
  • Gérard Bernhart
    • 1
  1. 1.Institut Clément Ader (ICA)Université de Toulouse, Mines AlbiAlbi Cedex 09France

Personalised recommendations