Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 55–62 | Cite as

Pyrolysis kinetics and pathway of polysiloxane conversion to an amorphous SiOC ceramic

  • Xiujun Wang
  • Jiquan Wu
  • Yongming Li
  • Chuanjian Zhou
  • Caihong Xu
Article

Abstract

The pyrolytic conversion of vinyl-terminated poly[hydridomethylsiloxane-co-vinylmethylsiloxane] (PSO) into SiOC ceramic at various heating rates has been investigated by thermogravimetry coupled with mass spectrometry. Kinetic analysis on pyrolysis process of PSO has been conducted by peak-fitting method. The results show that all the experimental derivative thermogravimetric curves recorded at five different heating rates can be best fitted by four Gaussian functions. The activation energy for each peak was determined by an isoconversional method, and kinetic models for Peaks 1 and 2 were investigated on the basis of Master plots. The results show that Peak 1 was governed by R2-type mechanisms, while Peak 2 followed diffusion-type transport mechanisms. Plausible chemical pathways for the evolved gases within these peaks are also discussed. The release of a large amount of carbon-containing species was identified in the temperature ranges corresponding to Peak 2 and 4, which are associated with the mineralization and ceramization steps, respectively. The transition from mineralization to ceramization process occurs in the region of Peak 3, and is accompanied by the evolution of H2.

Keywords

Polysiloxane Pyrolytic process Kinetic analysis Peak fitting 

Notes

Acknowledgments

The authors acknowledge the final supports from the National Science Foundation of China (50973114, 50973113), the Ministry of Science and Technology of China (2010CB934705, 2012CB933200) and the Chinese Academy of Sciences.

References

  1. 1.
    Hasegawa Y, Imura M, Yajima S. Synthesis of continuous silicon-carbide fibre. 2. Conversion of polycarbosilane fibre into silicon-carbide fibres. J Mater Sci. 1980;5:720–8.CrossRefGoogle Scholar
  2. 2.
    Wang K, Günthner M. High performance environmental barrier coating. Part II. Active filler loaded SiOC system for superalloys. J Eur Ceram Soc. 2011;31:3003–10.CrossRefGoogle Scholar
  3. 3.
    Colombo P. In praise of pores. Science. 2008;322:381–3.CrossRefGoogle Scholar
  4. 4.
    Wu J, Li Y, Chen L, Zhang Z, Wang D, Xu C. Simple fabrication of micro/nano-porous SiOC foam from polysiloxane. J Mater Chem. 2012;22:6542–5.CrossRefGoogle Scholar
  5. 5.
    Su D, Li YL. Pyrolytic transformation of liquid precursors to shaped bulk ceramics. J Eur Ceram Soc. 2010;30:1503–11.CrossRefGoogle Scholar
  6. 6.
    Riedel R, Passing G, Schoenfelder H, Brook RJ. Synthesis of dense silicon-based ceramics at low temperatures. Nature. 1992;355:714–6.CrossRefGoogle Scholar
  7. 7.
    Li XD, Edirisinghe MJ. Structural evaluation of polysilane-derived products: from amorphous to thermodynamically stable phases. Philos Mag. 2004;84:647–71.CrossRefGoogle Scholar
  8. 8.
    Perejon A, Sanchez-Jimenez PE, Criado JM, Perez-Maqueda LA. Kinetic analysis of complex solid-state reactions: a new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.CrossRefGoogle Scholar
  9. 9.
    Bernard S, Fiaty K, Cornu D, Miele P. Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly[B-(methylamino)borazine] precursors into boron nitride. J Phys Chem B. 2006;110:9048–60.CrossRefGoogle Scholar
  10. 10.
    Soraru GD, Pederiva L. Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J Am Ceram Soc. 2002;85:2181–7.CrossRefGoogle Scholar
  11. 11.
    Chandran K, Kamruddin M, Muralidaran P, Ganesan V. Thermal decomposition of sodium propoxides. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2646-2.Google Scholar
  12. 12.
    Santos LB, Ribeiro CA, Capela JMV, Crespi MS, Pimentel MAS, Julio MD. Kinetic parameters for thermal decomposition of hydrazine. J Therm Anal Calorim. 2013;. doi: 10.1007/s10973-013-2968-8.Google Scholar
  13. 13.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRefGoogle Scholar
  14. 14.
    Khawam A, Flanagan DR. Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci. 2006;95:472–98.CrossRefGoogle Scholar
  15. 15.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  16. 16.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  17. 17.
    Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 2008;94:427–32.CrossRefGoogle Scholar
  18. 18.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci C Polym Symp. 1964;6:183–95.CrossRefGoogle Scholar
  19. 19.
    Criado JM, Sánchez-Jiménez PE, Pérez-Maqueda LA. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92:199–203.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRefGoogle Scholar
  21. 21.
    Simon P. Isoconversional methods fundamentals, meaning and application. J Therm Anal. 2004;76:123–32.CrossRefGoogle Scholar
  22. 22.
    Zsako JJ. Kinetic analysis of thermogravimetric data. Therm Anal. 1996;46:1845–64.CrossRefGoogle Scholar
  23. 23.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  24. 24.
    Chen FX, Zhou CR, Li GP. Study on thermal decomposition and the non-isothermal decomposition kinetics of glyphosate. J Therm Anal Calorim. 2012;109:1457–62.CrossRefGoogle Scholar
  25. 25.
    Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–1.CrossRefGoogle Scholar
  26. 26.
    Gotor FJ, Criado JM, Málek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  27. 27.
    Málek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.CrossRefGoogle Scholar
  28. 28.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Thermal Anal. 1977;11:445–7.CrossRefGoogle Scholar
  29. 29.
    Hu Y, Li W, Hu J. Resolving overlapped spectra with curve fitting. Spectrochim Acta A. 2005;62:16–21.CrossRefGoogle Scholar
  30. 30.
    Plawsky JL, Wang F, Gill WN. Kinetic model for the pyrolysis of polysiloxane polymers to ceramic composites. AIChE J. 2002;48:2315–23.CrossRefGoogle Scholar
  31. 31.
    Bahloul-Hourlier D, Latournerie J, Dempsey P. Reaction pathways during the thermal conversion of polysiloxane precursors into oxycarbide ceramics. J Eur Ceram Soc. 2005;25:979–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Xiujun Wang
    • 1
    • 2
  • Jiquan Wu
    • 1
    • 2
  • Yongming Li
    • 1
  • Chuanjian Zhou
    • 3
  • Caihong Xu
    • 1
  1. 1.Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Research Institute of Polymer MaterialsShandong UniversityJinanChina

Personalised recommendations