Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 481–487 | Cite as

Effect of nanotubes on the thermal stability of polystyrene

  • M. Rios-Fachal
  • C. Gracia-Fernández
  • J. López-Beceiro
  • S. Gómez-Barreiro
  • J. Tarrío-Saavedra
  • A. Ponton
  • R. ArtiagaEmail author


It has been shown that introducing carbon nanotubes (CNT) into a polymer matrix has a beneficial effect on thermal stability of composites. While the specific effects noted differ depending on many parameters, the general trend is an increase in the degradation temperature and reduction in the degradation rate, quantified as the mass decline over time. The purpose of this study is to evaluate how CNTs influence the main degradation process of composites made with polystyrene containing 2, 3 and 5 % of CNTs. Thermogravimetric experiments are performed, with nitrogen purge, at multiple linear heating ramps. The effects of the nanotubes on the degradation of polystyrene are evaluated. Insightful kinetic parameters were obtained for the main process making use of a recently developed model, which is adapted to the thermogravimetric context. The model allows the means to separate the main process from other processes, which could interfere with the kinetic analysis, and also subtract the residual mass, which could produce an apparent stabilizing effect. The main degradation process is clearly stabilized by the presence of nanotubes, although the stabilization is more pronounced at the lowest of the filler contents considered. Clear effects of nanotubes on kinetic parameters were observed.


Nanotubes Polystyrene Thermal stability Degradation Thermogravimetry 



This work was partially funded by the Spanish Ministerio de Educacion y Ciencia MTM2008-00166 and MTM2011-22393 projects.


  1. 1.
    Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim. 2012;109:1163–7.CrossRefGoogle Scholar
  2. 2.
    Tarrío-Saavedra J, Naya S, Francisco-Fernández M, López-Beceiro J, Artiaga R. Functional nonparametric classification of wood species from thermal data. J Therm Anal Calorim. 2011;104:87–100.CrossRefGoogle Scholar
  3. 3.
    Tarrío-Saavedra J, Naya S, Francisco-Fernández M, Artiaga R, Lopez-Beceiro J. Application of functional ANOVA to the study of thermal stability of micro-nano silica epoxy composites. Chemom Intell Lab Syst. 2011;105:114–24.CrossRefGoogle Scholar
  4. 4.
    Tarrío-Saavedra J, López-Beceiro J, Naya S, Artiaga R. Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym Deg Stab. 2008;93:2133–7.CrossRefGoogle Scholar
  5. 5.
    Artiaga R, Cao R, Naya S, González-Martín B, Mier JL, García A. Separation of overlapping processes from TGA data and verification by EGA. Conshohocken: ASTM Special Technical Publication; 2007. p. 60.Google Scholar
  6. 6.
    Prime RB, Michalski C, Neag CM. Kinetic analysis of a fast reacting thermoset system. Thermochim Acta. 2005;429:213–7.CrossRefGoogle Scholar
  7. 7.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  8. 8.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized kinetic master plots for the thermal degradation of Polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76.CrossRefGoogle Scholar
  9. 9.
    Brown ME, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  10. 10.
    Vyazovkin S. In chapter 13 isoconversional kinetics; handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 2008. p. 503–38.Google Scholar
  11. 11.
    Janković B, Adnađević B, Jovanović J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis. Thermochim Acta. 2007;452:106–15.CrossRefGoogle Scholar
  12. 12.
    Bendall JS, Ilie A, Welland ME, Sloan J, Green MLH. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J Phys Chem B. 2006;110:6569–73.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S, Dranca I. Physical stability and relaxation of amorphous indomethacin. J Phys Chem B. 2005;109:18637–44.CrossRefGoogle Scholar
  14. 14.
    Premkumar T, Govindarajan S, Coles AE, Wight CA. Thermal decomposition kinetics of hydrazinium cerium 2,3-pyrazinedicarboxylate hydrate: a new precursor for CeO2. J Phys Chem B. 2005;109:6126–9.CrossRefGoogle Scholar
  15. 15.
    Milev AS, McCutcheon A, Kannangara GSK, Wilson MA, Bandara TY. Precursor decomposition and nucleation kinetics during platelike apatite synthesis. J Phys Chem B. 2005;109:17304–10.CrossRefGoogle Scholar
  16. 16.
    Yu Y, Wang M, Gan W, Tao Q, Li S. Polymerization-induced viscoelastic phase separation in polyethersulfone-modified epoxy systems. J Phys Chem B. 2004;108:6208–15.CrossRefGoogle Scholar
  17. 17.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRefGoogle Scholar
  18. 18.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70A:487–523.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxyanhydride cure. Macromol Chem Phys. 1999;200:2294–303.CrossRefGoogle Scholar
  20. 20.
    Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.CrossRefGoogle Scholar
  21. 21.
    López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co(HCOO)3 [(CH3) 2NH2]. J Phys Chem C. 2012;116:1219–24.CrossRefGoogle Scholar
  22. 22.
    Artiaga R, López-Beceiro J, Tarrío-Saavedra J, Gracia-Fernández C, Naya S, Mier JL. Estimating the reversing and non-reversing heat flow from standard DSC curves in the glass transition region. J Chemom. 2011;25:287–94.CrossRefGoogle Scholar
  23. 23.
    Slobodian P, Králová D, Lengálová A, Novotný R, Sáha P. Adaptation of polystyrene/multi-wall carbon nanotube composite properties in respect of its thermal stability. Polym Compos. 2010;31:452–8.Google Scholar
  24. 24.
    Antonucci V, Faiella G, Giordano M, Nicolais L, Pepe G. Electrical properties of single walled carbon nanotube reinforced polystyrene composites. Macromol Symp. 2007;247:172–81.CrossRefGoogle Scholar
  25. 25.
    Howell BA, Cui Y, Priddy DB. Assessment of the thermal degradation characteristics of isomeric poly(styrene)s using TG, TG/MS and TG/GC/MS. Thermochim Acta. 2003;396:167–77.CrossRefGoogle Scholar
  26. 26.
    Howell BA, Chaiwong K. Thermal stability of poly(styrene) containing no head-to-head units. J Therm Anal Calorim. 2009;96:219–22321.CrossRefGoogle Scholar
  27. 27.
    Suwardie JH, Artiaga R, Barbadillo F. Simultaneous thermal analysis of hexahydrophtalic anhydride. Thermochim Acta. 2002;392–393:289–94.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • M. Rios-Fachal
    • 1
  • C. Gracia-Fernández
    • 2
  • J. López-Beceiro
    • 3
  • S. Gómez-Barreiro
    • 4
  • J. Tarrío-Saavedra
    • 3
  • A. Ponton
    • 5
  • R. Artiaga
    • 3
    Email author
  1. 1.CPI Cruz do SarA CoruñaSpain
  2. 2.TA Instruments Waters CromatografíaAlcobendasSpain
  3. 3.EPS Universidade da CoruñaFerrolSpain
  4. 4.CESUGAUniversity College of DublinA CoruñaSpain
  5. 5.Université Paris Diderot-Paris 7Paris Cedex 13France

Personalised recommendations