Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1447–1453 | Cite as

Kinetic studies in solid state reactions by sample-controlled methods and advanced analysis procedures

  • Luis A. Pérez-MaquedaEmail author
  • José M. Criado
  • Pedro E. Sánchez-Jiménez
  • Antonio Perejón


A comparative study of both conventional rising temperature and sample-controlled methods, like constant rate thermal analysis (CRTA), is carried out after analyzing a set of solid state reactions using both methods. It is shown that CRTA avoids the influence of heat and mass transfer phenomena for a wide range of sample sizes leading to reliable kinetic parameters. On the other hand, conventional rising temperature methods yield αT plots dependent on experimental conditions, even when using samples sizes smaller than 2 mg. Moreover, it is shown that the discrimination of overlapping processes is dramatically improved using sample-controlled methods instead of conventional heating procedures. An advanced method for performing the kinetic analysis of complex processes from a single CRTA experiment is proposed.


Kinetics Solid-state reactions Sample-controlled thermal analysis Activation energy Kinetic model Overlapping processes 



We thank Spanish Government (project CTQ 2011-27626) partially supported by FEDER funds for financial support. We are grateful to Prof. Juan López and Dr. José E. Crespo-Amorós for providing access to their lab to prepare the PVC blends.


  1. 1.
    Ganteaume M, Rouquerol J. Kinetic study on thermal-decomposition by coupling calorimetry and thermal-analysis at constant decomposition rate. J Therm Anal. 1971;3(4):413.CrossRefGoogle Scholar
  2. 2.
    Rouquerol J. Methode danalyse thermique sous faible pression et a vitesse de decomposition constante. Bull Soc Chim Fr. 1964;1:31–2.Google Scholar
  3. 3.
    Paulik J, Paulik F. Quasi-isothermal thermogravimetry. Anal Chim Acta. 1971;56(2):328–31.CrossRefGoogle Scholar
  4. 4.
    Ganteaume M, Rouquerol F, Rouquerol J. Comparative effect of 2 parameters (pressure and decomposition speed) on texture of divided oxides (gallium oxide and alumina) from thermal decomposition of corresponding hydroxides. J Chim Phys Phys-Chim Biol. 1968;65(4):587.Google Scholar
  5. 5.
    Rouquerol J, Rouquerol F, Ganteaume M. Thermal-decomposition of gibbsite under low-pressures. 1. Formation of boehmitic phase. J Catal. 1975;36(1):99–110.CrossRefGoogle Scholar
  6. 6.
    Rouquerol J, Rouquerol F, Ganteaume M. Thermal-decomposition of gibbsite under low-pressures. 2. Formation of microporous alumina. J Catal. 1979;57(2):222–30.CrossRefGoogle Scholar
  7. 7.
    Paulik F, Paulik J, Naumann R, Kohnke K, Petzold D. Mechanism and kinetics of the dehydration of hydrargillites. Part 1. Thermochim Acta. 1983;64(1–2):1–14.CrossRefGoogle Scholar
  8. 8.
    Dufau N, Luciani L, Rouquerol F, Llewellyn P. Use of sample controlled thermal analysis to liberate the micropores of aluminophosphate AlPO4-11: evidence of template evaporation. J Mater Chem. 2001;11(4):1300–4.CrossRefGoogle Scholar
  9. 9.
    Sicard L, Llewellyn PL, Patarin J, Kolenda F. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecyl sulfate. Microporous Mesoporous Mater. 2001;44:195–201.CrossRefGoogle Scholar
  10. 10.
    Keene MTJ, Gougeon RDM, Denoyel R, Harris RK, Rouquerol J, Llewellyn PL. Calcination of the MCM-41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity. J Mater Chem. 1999;9(11):2843–50.CrossRefGoogle Scholar
  11. 11.
    Rouquerol F, Rouquerol J, Thevand G, Triaca M. Desorption of chemisorbed species: its study by controlled rate thermal-analysis. Surf Sci. 1985;162(1–3):239–44.CrossRefGoogle Scholar
  12. 12.
    Torralvo MJ, Grillet Y, Rouquerol F, Rouquerol J. Application of CRTA to the study of microporosity by thermodesorption of preadsorbed water. J Therm Anal. 1994;41(6):1529–34.CrossRefGoogle Scholar
  13. 13.
    Barnes PA, Parkes GMB. A new approach to catalyst preparation using rate controlled temperature programme techniques. In: Poncelet G, Martens J, Delmon B, Jacobs PA, Grange P, editors. Amsterdam: Elsevier; 1995. p. 859–868.Google Scholar
  14. 14.
    Barnes PA, Parkes GMB, Brown DR, Charsley EL. Applications of new high resolution evolved gas analysis systems for the characterisation of catalysts using rate-controlled thermal analysis. Thermochim Acta. 1995;269:665–76.CrossRefGoogle Scholar
  15. 15.
    Dawson EA, Parkes GMB, Barnes PA, Chinn MJ, Norman PR. A study of the activation of carbon using sample controlled thermal analysis. J Therm Anal Calorim. 1999;56(1):267–73.CrossRefGoogle Scholar
  16. 16.
    Charsley EL, Rooney JJ, Hill JO, Parkes GMB, Barnes PA, Dawson EA. Development and applications of a preparative scale sample controlled thermogravimetric system. J Therm Anal Calorim. 2003;72(3):1091.CrossRefGoogle Scholar
  17. 17.
    Fesenko EA, Barnes PA, Parkes GMB, Dawson EA, Tiernan MJ. Catalyst characterisation and preparation using sample controlled thermal techniques: high resolution studies and the determination of the energetics of surface and bulk processes. Top Catal. 2002;19(3–4):283–301.CrossRefGoogle Scholar
  18. 18.
    Dawson EA, Parkes GMB, Barnes PA, Chinn MJ. An investigation of the porosity of carbons prepared by constant rate activation in air. Carbon. 2003;41(3):571–8.CrossRefGoogle Scholar
  19. 19.
    Chopra GS, Real C, Alcala MD, Perez-Maqueda LA, Subrt J, Criado JM. Factors influencing the texture and stability of maghemite obtained from the thermal decomposition of lepidocrocite. Chem Mater. 1999;11(4):1128–37.CrossRefGoogle Scholar
  20. 20.
    Perez-Maqueda LA, Criado JM, Real C, Subrt J, Bohacek J. The use of constant rate thermal analysis (CRTA) for controlling the texture of hematite obtained from the thermal decomposition of goethite. J Mater Chem. 1999;9(8):1839–46.CrossRefGoogle Scholar
  21. 21.
    Perez-Maqueda LA, Criado JM, Subrt J, Real C. Synthesis of acicular hematite catalysts with tailored porosity. Catal Lett. 1999;60(3):151–6.CrossRefGoogle Scholar
  22. 22.
    Pérez-Maqueda LA, Jiménez PES, Criado JM. Sample controlled temperature (SCT): a new method for the synthesis and characterization of catalysts. Curr Top Catal. 2007;6:1–17.Google Scholar
  23. 23.
    Fesenko EA, Barnes PA, Parkes GMB. SCTA and catalysis. In: Sörensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple form and future. Boston: Kluwer Academic; 2003. p. 174–225.CrossRefGoogle Scholar
  24. 24.
    Llewellyn P, Rouquerol F, Rouquerol J. SCTA and Adsorbents. In: Sörensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple form and future. Dordrecht: Kluwer Academic; 2003. p. 135–73.CrossRefGoogle Scholar
  25. 25.
    Alcala MD, Criado JM, Gotor FJ, Real C. β-SiALON obtained from carbothermal reduction of kaolinite employing sample controlled reaction temperature (SCRT). J Mater Sci. 2006;41(7):1933–8.CrossRefGoogle Scholar
  26. 26.
    Alcala MD, Criado JM, Real C. Sample controlled reaction temperature (SCRT): controlling the phase composition of silicon nitride obtained by carbothermal reduction. Adv Eng Mater. 2002;4(7):478–82.CrossRefGoogle Scholar
  27. 27.
    Alcala MD, Gotor FJ, Perez-Maqueda LA, Real C, Dianez MJ, Criado JM. Constant rate thermal analysis (CRTA) as a tool for the synthesis of materials with controlled texture and structure. J Therm Anal Calorim. 1999;56(3):1447–52.CrossRefGoogle Scholar
  28. 28.
    Real C, Alcala D, Criado JM. Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method. Solid State Ion. 1997;95(1–2):29–32.CrossRefGoogle Scholar
  29. 29.
    Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide? Solid State Ion. 2003;157(1–4):163–9.CrossRefGoogle Scholar
  30. 30.
    Criado JM, Gotor FJ, Real C, Jimenez F, Ramos S, Delcerro J. Application of the constant rate thermal-analysis technique to the microstructure control of BaTiO3 yielded from coprecipitated oxalate. Ferroelectrics. 1991;115(1–3):43–8.CrossRefGoogle Scholar
  31. 31.
    Gotor FJ, Perez-Maqueda LA, Criado JM. Synthesis of BaTiO3 by applying the sample controlled reaction temperature (SCRT) method to the thermal decomposition of barium titanyl oxalate. J Eur Ceram Soc. 2003;23(3):505–13.CrossRefGoogle Scholar
  32. 32.
    Perez-Maqueda LA, Dianez MJ, Gotor FJ, Sayagues MJ, Real C, Criado JM. Synthesis of needle-like BaTiO3 particles from the thermal decomposition of a citrate precursor under sample controlled reaction temperature conditions. J Mater Chem. 2003;13(9):2234–41.CrossRefGoogle Scholar
  33. 33.
    Arii T, Terayama K, Fujii N. Controlled-rate thermal analysis: study of the process of super hard material debinding. J Therm Anal. 1996;47(6):1649–61.CrossRefGoogle Scholar
  34. 34.
    Dwivedi A, Speyer RF. Rate-controlled organic burnout of multilayer green ceramics. Thermochim Acta. 1994;247(2):431–8.CrossRefGoogle Scholar
  35. 35.
    Nishimoto MY, Speyer RF, Hackenberger WS. Thermal processing of multilayer PLZT actuators. J Mater Sci. 2001;36(9):2271–6.CrossRefGoogle Scholar
  36. 36.
    Paulik J, Paulik F. Simultaneous thermoanalytical examinations by means of derivatograph. In: Svehla G, Wendlandt WW, editors. Wilson′s comprehensive analytical chemistry, vol. XII. Amsterdam: Elsevier; 1981.Google Scholar
  37. 37.
    Paulik F. Special trends in thermal analysis. New York: Wiley; 1995.Google Scholar
  38. 38.
    Parkes GMB, Barnes PA, Charsley EL. New concepts in sample controlled thermal analysis: resolution in the time and temperature domains. Anal Chem. 1999;71(13):2482–7.CrossRefGoogle Scholar
  39. 39.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM. Quantitative characterization of multicomponent polymers by sample-controlled thermal analysis. Anal Chem. 2010;82(21):8875–80.CrossRefGoogle Scholar
  40. 40.
    Frost RL, Palmer SJ, Kristof J, Horvath E. Dynamic and controlled rate thermal analysis of halotrichite. J Therm Anal Calorim. 2010;99(2):501–7.CrossRefGoogle Scholar
  41. 41.
    Arii T, Kishi A. The effect of humidity on thermal process of zinc acetate. Thermochim Acta. 2003;400(1–2):175–85.CrossRefGoogle Scholar
  42. 42.
    Bordere S, Floreancig A, Rouquerol F, Rouquerol J. Obtaining a divided uranium oxide from the thermolysis of UO2(NO3)2·6H2O: outstanding role of the residual pressure. Solid State Ion. 1993;63–5:229–35.CrossRefGoogle Scholar
  43. 43.
    Bordere S, Rouquerol F, Llewellyn PL, Rouquerol J. Unexpected effect of pressure on the dehydration kinetics of uranyl nitrate trihydrate: an example of a Smith-Topley effect. Thermochim Acta. 1996;283:1–11.CrossRefGoogle Scholar
  44. 44.
    Criado JM, Perez-Maqueda LA, Gotor FJ, Malek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72(3):901–6.CrossRefGoogle Scholar
  45. 45.
    Koga N, Criado JM, Tanaka H. Kinetic analysis of the thermal decomposition of synthetic malachite by CRTA. J Therm Anal Calorim. 2000;60(3):943–54.CrossRefGoogle Scholar
  46. 46.
    Koga N, Criado JM, Tanaka H. A kinetic aspect of the thermal dehydration of dilithium tetraborate trihydrate. J Therm Anal Calorim. 2002;67(1):153–61.CrossRefGoogle Scholar
  47. 47.
    Perez-Maqueda LA, Ortega A, Criado JM. The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochim Acta. 1996;277:165–73.Google Scholar
  48. 48.
    Ortega A, Roldan MA, Real C. Carbothermal synthesis of vanadium nitride: kinetics and mechanism. Int J Chem Kinet. 2006;38(6):369–75.CrossRefGoogle Scholar
  49. 49.
    Parkes GMB, Barnes PA, Charsley EL, Reading M, Abrahams I. Real-time analysis of peak shape: a theoretical approach to sample controlled thermal analysis. Thermochim Acta. 2000;354(1–2):39–43.CrossRefGoogle Scholar
  50. 50.
    Tatsuoka T, Koga N. Effect of atmospheric water vapor on the thermally induced crystallization in zirconia gel. J Am Ceram Soc. 2012;95(2):557–64.CrossRefGoogle Scholar
  51. 51.
    Tiernan MJ, Barnes PA, Parkes GMB. Use of solid insertion probe mass spectrometry and constant rate thermal analysis in the study of materials: determination of apparent activation energies and mechanisms of solid-state decomposition reactions. J Phys Chem B. 1999;103(33):6944–9.CrossRefGoogle Scholar
  52. 52.
    Tiernan MJ, Barnes PA, Parkes GMB. New approach to the investigation of mechanisms and apparent activation energies for the reduction of metal oxides using constant reaction rate temperature-programmed reduction. J Phys Chem B. 1999;103(2):338–45.CrossRefGoogle Scholar
  53. 53.
    Yamada S, Tsukumo E, Koga N. Influences of evolved gases on the thermal decomposition of zinc carbonate hydroxide evaluated by controlled rate evolved gas analysis coupled with TG. J Therm Anal Calorim. 2009;95(2):489–93.CrossRefGoogle Scholar
  54. 54.
    Criado JM, Perez-Maqueda LA. Sample controlled thermal analysis and kinetics. J Therm Anal Calorim. 2005;80(1):27–33.CrossRefGoogle Scholar
  55. 55.
    Sanchez-Jimenez PE, Criado JM, Perez-Maqueda LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 2008;94(2):427–32.CrossRefGoogle Scholar
  56. 56.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab. 2009;94(11):2079–85.CrossRefGoogle Scholar
  57. 57.
    Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007.CrossRefGoogle Scholar
  58. 58.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95(5):733–9.CrossRefGoogle Scholar
  59. 59.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114(30):7868–76.CrossRefGoogle Scholar
  60. 60.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Constant rate thermal analysis for thermal stability studies of polymers. Polym Degrad Stab. 2011;96(5):974–81.CrossRefGoogle Scholar
  61. 61.
    Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C. 2012;116(21):11797–807.CrossRefGoogle Scholar
  62. 62.
    Criado JM, Perez-Maqueda LA. SCTA and kinetics. In: Sörensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple form and future. Dordrecht: Kluwer Academic; 2003.Google Scholar
  63. 63.
    Criado JM. Kinetic-analysis of thermoanalytical diagrams obtained with the quasi-isothermal heating technique. Thermochim Acta. 1979;28(2):307–12.CrossRefGoogle Scholar
  64. 64.
    Criado JM, Ortega A, Gotor F. Correlation between the shape of controlled-rate thermal-analysis curves and the kinetics of solid-state reactions. Thermochim Acta. 1990;157(1):171–9.CrossRefGoogle Scholar
  65. 65.
    Reading M. Controlled rate thermal analysis and beyond. In: Charsley EL, Warrington SB, editors. Thermal analysis: techniques and applications. London: Royal Society of Chemistry; 1992. p. 126–55.Google Scholar
  66. 66.
    Koga N, Goshi Y, Yamada S, Perez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.CrossRefGoogle Scholar
  67. 67.
    Rouquerol J. Critical examination of several problems typically found in kinetic study of thermal-decomposition under vacuum. J Therm Anal. 1973;5(2–3):203–16.Google Scholar
  68. 68.
    Dianez MJ, Perez-Maqueda LA, Criado JM. Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions. Rev Sci Instrum. 2004;75(8):2620–4.CrossRefGoogle Scholar
  69. 69.
    Rouquerol F, Rouquerol J. Thermal analysis. In: Wiedemann HG, editor. Thermal analysis (Proc 3rd ICTA, 19711972). Basel: Birkhauser; 1971. p. 373.Google Scholar
  70. 70.
    Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110(45):12456–62.CrossRefGoogle Scholar
  71. 71.
    Perejon A, Sanchez-Jimenez PE, Criado JM, Perez-Maqueda LA. Kinetic analysis of complex solid-state reactions: a new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.CrossRefGoogle Scholar
  72. 72.
    Agarwal K, Prasad M, Chakraborty A, Vishwakarma CB, Sharma RB, Setua DK. Studies on phase morphology and thermo-physical properties of nitrile rubber blends. J Therm Anal Calorim. 2011;104(3):1125–33.CrossRefGoogle Scholar
  73. 73.
    Ristic IS, Bjelovic ZD, Hollo B, Szecsenyi KM, Budinski-Simendic J, Lazic N, et al. Thermal stability of polyurethane materials based on castor oil as polyol component. J Therm Anal Calorim. 2013;111(2):1083–91.CrossRefGoogle Scholar
  74. 74.
    Hatakeyama H, Matsumura H, Hatakeyama T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil-molasses polyols. J Therm Anal Calorim. 2013;111(2):1545–52.CrossRefGoogle Scholar
  75. 75.
    Hammer A. User Com. Information for users of Mettler-Toledo thermal analysis systems no 35. June 2012.Google Scholar
  76. 76.
    Wang FCY, Burleson AD. The development of pyrolysis fast gas chromatography for analysis of synthetic polymers. J Chromatogr A. 1999;833(1):111–9.CrossRefGoogle Scholar
  77. 77.
    Peris-Vicente J, Baumer U, Stege H, Lutzenberger K, Adelantado JVG. Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Anal Chem. 2009;81(8):3180–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Luis A. Pérez-Maqueda
    • 1
    Email author
  • José M. Criado
    • 1
  • Pedro E. Sánchez-Jiménez
    • 1
  • Antonio Perejón
    • 1
  1. 1.Instituto de Ciencia de Materiales de SevillaUniversidad de Sevilla, C.S.I.CSevillaSpain

Personalised recommendations