Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1197–1201 | Cite as

Magnetic transition in dimerized radical cation salt of (BPDT-TTF)2ICl2 studied by heat capacity measurements

  • Guoyang Guan
  • Shuhei Fukuoka
  • Satoshi Yamashita
  • Takashi Yamamoto
  • Hiromi Taniguchi
  • Yasuhiro NakazawaEmail author


Thermodynamic investigation using the relaxation calorimetry technique and the microchip calorimetry technique is performed to clarify low-temperature behaviors of a radical cation salt consisting of a donor molecule of bispropylenedithiotetrathiafulvalene (BPDT-TTF) and a linear anion of \({{\text{ICl}}_{2}^{-}}\). This compound has a layered structure similar to numerous BEDT-TTF compounds. The donor molecules form a dimerized arrangement in the layer. Temperature dependence of heat capacity obtained by the relaxation technique shows a broad hump structure around 20–25 K corresponding to the temperature where the magnetic susceptibility shows a drastic decrease due to the formation of the singlet spin state. The microchip calorimetry technique detected a step-like anomaly around 23 K in the temperature dependence of C p T −1 of which entropy is evaluated as only few % of Rln2 corresponding to the full entropy of localized π-electrons located on each dimer unit. The negligibly small T-linear term in the low-temperature heat capacity and absence of magnetic fields dependence below 3.2 K predict opening of rigid gap structure in the spin excitations, which is consistent with a spin-singlet formation due to the formation of spin-Peierls type ordering or charge ordering state.


Heat capacity Organic donor molecules Spin–Peierls transition Dimer–Mott system 



This work was supported in part by Grant-in-Aid for Scientific Research (Nos. 23110717 and 22340098) from the MEXT and JSPS.


  1. 1.
    Ishiguro T, Yamaji K, Saito G. Organic superconductors. 2nd ed. Heidelberg: Springer-Verlag; 1998.CrossRefGoogle Scholar
  2. 2.
    Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang H-H, Kini AM, Whangbo M-H. Organic superconductors. Englewood Cliffs: Prentice-Hall; 1992.Google Scholar
  3. 3.
    Bernier P, Lefrant S, Bidan G, editors. Advances in synthetic metals. Lausanne: Elsevier; 1999. p. 262–348.Google Scholar
  4. 4.
    Kanoda K. Metal-insulator transition in κ-(ET)2X and (DCNQI)2M: two contrasting manifestation of electron correlation. J Phys Soc Jpn. 2006;75:051007:1–16.CrossRefGoogle Scholar
  5. 5.
    Kato R. Conductive copper salts of 2,5-disubstituted N,N’-dicyanobenzoquinonediimines (DCNQIs): structure and properties. Bull Chem Soc Jpn. 2000;73:515–34.CrossRefGoogle Scholar
  6. 6.
    Nigrey PJ, Eugene BM, Venturini L, Azevedo LJ, Schirber JE, Perschke SE, Williams JM. Synthesis, structure, and properties of (BPDT-TTF)2IBr2. Phys B. 1986;143:290–2.Google Scholar
  7. 7.
    Kobayashi H, Takahashi N, Kato R, Kobayashi A, Sasaki Y. The crystal structure and electrical resistivity of (BPDT-TTF)2I3. Chem Lett. 1984;8:1331–4.CrossRefGoogle Scholar
  8. 8.
    Sorai M, editor. Comprehensive handbook of calorimetry and thermal analysis. Chichester: Wiley; 2004.Google Scholar
  9. 9.
    Nakazawa Y, Kawamoto A, Kanoda K. Characterization of low-temperature electronic states of the organic conductors α-(BEDT-TTF)2MHg(SCN)4 (M = K, Rb and NH4) by specific-heat measurements. Phys Rev B. 1995;52:12890–4.CrossRefGoogle Scholar
  10. 10.
    Muraoka Y, Yamashita S, Yamamoto T, Nakazawa Y. Microchip-calorimetry of organic charge transfer complex which shows superconductivity at low temperatures. Thermochim Acta. 2012;532:88–91.CrossRefGoogle Scholar
  11. 11.
    Muraoaka Y, Yamashita S, Yamamoto T, Nakazawa Y. AC heat capacities of κ-(BEDT-TTF)2Cu2(CN)3 measured by microchip calorimeter. J Phys Conf Ser. 2011;320:012027:1–6.Google Scholar
  12. 12.
    Fukuoka S, Yamashita S, Yamamoto T, Nakazawa Y, Kobayashi A, Kobayashi H. Magnetic heat capacities of κ-(BETS)2FeBr4 measured by a microchip calorimeter. Phys Status Solid. 2012;C9:1174–6.Google Scholar
  13. 13.
    Bonner JC, Fisher ME. Linear magnetic chains with anisotropic coupling. Phys Rev. 1964;135:A640–58.CrossRefGoogle Scholar
  14. 14.
    Nakazawa Y, Sato A, Seki M, Saito K, Hiraki K, Takahashi T, Kanoda K, Sorai M. Spin-Peierls transition of the quasi-one-dimensional electronic system (DMe-DCNQI)2M (M = Li,Ag) probed by heat capacity. Phys Rev B. 2003;68:085112:1–8.CrossRefGoogle Scholar
  15. 15.
    Okuma K, Fujisaki T, Nakazawa Y, Saito K, Oguni M. Unusual low-temperature thermodynamic properties of pellet samples of (DMe-DCNQI)2M (M = Li, Ag). J Therm Anal Calorim. 2005;81:587–90.CrossRefGoogle Scholar
  16. 16.
    Sorai M, Nakazawa Y, Nakano M, Miyazaki Y. Calorimetric investigation of phase transitions occurring in molecule-based magnets. Chem Rev. 2013;113:PR41–122.CrossRefGoogle Scholar
  17. 17.
    de Jongh LJ, Miedema AR. Experiments on simple magnetic model systems. Adv Phys. 2001;50:947–1170.CrossRefGoogle Scholar
  18. 18.
    Yamashita S, Nakazawa Y. Heat capacities of antiferromagnetic dimer-Mott insulators in organic charge-transfer complexes. J Therm Anal Calorim. 2010;99:153–7.CrossRefGoogle Scholar
  19. 19.
    Nakazawa Y, Yamashita S. Thermodynamic properties of κ-(BEDT-TFF)2X salts: electron correlations and superconductivity. Crystals. 2012;2:741–61.CrossRefGoogle Scholar
  20. 20.
    de Souza M, Brühl A, Müller J, Foury-Leylekian P, Moradpour A, Pouget J-P, Lang M. Thermodynamic studies at the charge-ordering and spin-Peierls transitions in (TMTTF)2X. Phys B. 2009;404:494–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Guoyang Guan
    • 1
  • Shuhei Fukuoka
    • 1
  • Satoshi Yamashita
    • 1
  • Takashi Yamamoto
    • 1
  • Hiromi Taniguchi
    • 2
  • Yasuhiro Nakazawa
    • 1
    Email author
  1. 1.Department of Chemistry, Graduate School of ScienceOsaka UniversityOsakaJapan
  2. 2.Department of Physics, Graduate School of ScienceSaitama UniversitySaitamaJapan

Personalised recommendations