Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1309–1315 | Cite as

High temperature oxidation of Cr–Mo–V tool steel in carbon dioxide

  • D. Chaliampalias
  • G. Vourlias
  • E. Pavlidou
  • K. ChrissafisEmail author


This study aims to examine the oxidation resistance and kinetics of Cr, Mo, and V containing tool steel (Calmax) when exposed in CO2 high temperature environment by thermogravimetric measurements, X-ray diffraction analysis, and microscopic observation. The tool steel samples begin to oxidize at 480 °C while over 600 °C, the oxidation rate increases significantly. Finally, at 900 °C, the oxidation rate is significantly high. The activation energy of the oxidation was calculated as 160.1 kJ mol−1. Microscopically, the thickness of the scale was found to increase with the exposure temperature, and the as formed scales consisted of two distinguishable oxide layers.


Metals and Alloys Microstructure Scanning Electron Microscopy Thermogravimetric measurements 


  1. 1.
    International ASM. Properties and Selection Irons Steels and High Performance Alloys. ASM Handbook. 1993;1:1763.Google Scholar
  2. 2.
    Davis JR. Heat-Resistant Materials. 3rd ed. New York: ASM International; 1997.Google Scholar
  3. 3.
    The International Nickel Company, Standard Wrought Austenitic Stainless Steel, Manual 252, Materials Engineering, 1974.Google Scholar
  4. 4.
    Birks N, Meier GH. Introduction to High Temperature Oxidation of Metals. London: Edward Arnold; 1983.Google Scholar
  5. 5.
    Kofstad P. High Temperature Corrosion. 3rd ed. New York: Elsevier Applied Science; 1988.Google Scholar
  6. 6.
    Abuluwefa HT, Guthrie RIL, Ajersch F. Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation. Mater Trans. 1997;28A:1633–41.Google Scholar
  7. 7.
    Chaliampalias D, Vourlias G, Pavlidou E, Chrissafis K. Examination of the oxidation resistance of Cr–Mo–V tool steel by thermal analysis. J Therm Anal Calorim. 2012;108:677–84.CrossRefGoogle Scholar
  8. 8.
    Wright I. High Temperature Corrosion. ASM Handbook vol 13. New York: ASM Internatiuonal; 1997. p. 97–101.Google Scholar
  9. 9.
    Akhbarizadeh A, Shafyei A, Golozar MA. Effects of cryogenic treatment on wear behavior of D6 tool steel. Mater Des. 2009;30:3259–64.CrossRefGoogle Scholar
  10. 10.
    Vourlias G, Chaliampalias D, Zorba TT, Pavlidou E, Psyllaki P, Paraskevopoulos KM, Stergioudis G, Chrissafis K. A combined study of the oxidation mechanism and resistance of AISI D6 steel exposed at high temperature environments. Appl Surf Sci. 2011;257(15):6687–98.CrossRefGoogle Scholar
  11. 11.
    Valette S, Denoirjean A, T′etard D, Lefort P. C40E steel oxidation under CO2: Kinetics and reactional mechanism. J Alloy Compd. 2006;413:222–31.CrossRefGoogle Scholar
  12. 12.
    Pieraggi B. Calculations of parabolic reaction rate constants. Oxid Met. 1987;27:177–85.CrossRefGoogle Scholar
  13. 13.
    Levy M, Farrell P, Pettit F. Oxidation of some advanced single-crystal nickel-base superalloys in air at 2000 F (1093°C). Corrosion. 1986;42:708–13.CrossRefGoogle Scholar
  14. 14.
    Pieraggi B, Rapp RA. Chromia scale growth in alloy oxidation and the reactive element effect. J Electrochem Soc. 1993;140:2844–50.CrossRefGoogle Scholar
  15. 15.
    PC Powder Diffraction Files, JCPDS-ICDD, 2005.Google Scholar
  16. 16.
    Willis BTM, Rooksby HP. Crystal structure and antiferromagnetism in haematite. Proc. Phys. Soc. 1952;B65:950–8.Google Scholar
  17. 17.
    Malik AU. High-temperature oxidation of transition metal, carbide-dispersed iron-base alloys. Oxid Met. 1985;24(5–6):233–63.CrossRefGoogle Scholar
  18. 18.
    Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S. In-situ characterization of the oxide scale formed on yttrium-coated 304 stainless steel at 1000°C. Mater Charact. 2002;49:55–65.CrossRefGoogle Scholar
  19. 19.
    Stringer J. Reactive element effect in high-temperature corrosion. Mat Sci Eng. 1989;A120:129–37.Google Scholar
  20. 20.
    Cotell CM, Yurek GJ, Hussey RJ, Mitchell DF, Graham MJ. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. Oxid Met. 1990;34:173–200.CrossRefGoogle Scholar
  21. 21.
    Ecer GM, Singh RB, Meier GH. The influence of superficially applied oxide powders on the high-temperature oxidation behaviour of Cr2O3-forming alloys. Oxid Met. 1982;18:55–81.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • D. Chaliampalias
    • 1
  • G. Vourlias
    • 1
  • E. Pavlidou
    • 1
  • K. Chrissafis
    • 1
    Email author
  1. 1.Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations