Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 3, pp 1921–1925 | Cite as

The effect of temperature on the mechanical properties of a protein-based biopolymer network

The eggshell membrane
  • Fernando G. Torres
  • Omar P. Troncoso
  • Maribella R. Montes
Article

Abstract

Several studies have shown that eggshell membrane (ESM) is a suitable biomaterial with potential applications in biomedicine such as wound repair and cell culture. In order to control and improve the use of ESM for biomedical applications their physical and structural properties must be known. In this paper, we have studied the effect of temperature on the mechanical properties of the ESM. Atomic force microscopy was used to assess the morphology of the ESM. The mechanical properties of the membranes were studied by means of uniaxial tensile tests carried out at four different temperatures. Differential scanning calorimetry and thermo-gravimetrical analysis were used to assess the thermal transitions of the ESM and the influence of the water content on its thermal behavior. The Young’s modulus showed a linear inverse dependence with regard to the temperature of the sample. A peak associated to the thermal denaturation of collagen was observed in the DSC tests of the membrane. These peaks showed a dependence on the water content of the specimens.

Keywords

Eggshell membrane Collagen Thermal transition 

References

  1. 1.
    Nys Y, Gautron J, McKee MD, Gautron JM, Hincke MT. Biochemical and functional characterisation of eggshell matrix proteins in hens. World Poult Sci J. 2001;57:401–13.CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Chi Y. Characterization of collagen from eggshell membrane. Biotechnology. 2009;8:254–8.CrossRefGoogle Scholar
  3. 3.
    Maeda K, Sasaaki Y. An experience of hen-egg membrane as a biological dressing. Burns. 1984;8:313–6.CrossRefGoogle Scholar
  4. 4.
    Yang J, Chuang S, Yang W, Tsay P. Egg membrane as a new biological dressing in split-thickness skin graft dono sites: a preliminary clinical evaluation. Chang Gung Med J. 2003;26:153–8.Google Scholar
  5. 5.
    Tavassoli M. Effect of the substratum on the growth of CFU-c in continuous marrow culture. Experientia. 1983;39:411–2.CrossRefGoogle Scholar
  6. 6.
    Durmus E, Celik I, Ozturk A, Ozkan Y, Aydin MF. Evaluation of the potential beneficial effects of ostrich eggshell combined with eggshell membranes in healing of cranial defects in rabbits. J Int Med Res. 2003;31:223–30.Google Scholar
  7. 7.
    Choi MMF, Pang WSH, Xiao D, Wu X. An optical glucose biosensor with eggshell membrane as an enzyme immobilisation platform. Analyst. 2001;126:1558–63.CrossRefGoogle Scholar
  8. 8.
    Yang D, Qi L, Ma J. Hierarchically ordered networks comprising crystalline ZrO2 tubes through sol–gel mineralization of eggshell membranes. J Mater Chem. 2003;13:1119–23.CrossRefGoogle Scholar
  9. 9.
    Ishikawa S, Suyama K, Arihara K, Itoh M. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour Technol. 2002;81:201–6.CrossRefGoogle Scholar
  10. 10.
    Torres FG, Troncoso OP, Piaggio F, Hijar A. Structure-property relationships of a biopolymer network: the eggshell membrane. Acta Biomater. 2010;6:3687–93.CrossRefGoogle Scholar
  11. 11.
    Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press; 1999.Google Scholar
  12. 12.
    Watts DC, El Mowafy OM, Grant AA. Temperature-dependence of compressive properties of human dentin. J Dent Res. 1987;66:29–32.CrossRefGoogle Scholar
  13. 13.
    Bonser RHC, Purslow PP. The Young’s modulus of feather keratin. J Exp Biol. 1995;198:1029–33.Google Scholar
  14. 14.
    Chae Y, Aguilar G, Lavernia EJ, Wong BJF. Characterization of temperature dependent mechanical behavior of cartilage. Lasers Surg Med. 2003;32:271–8.CrossRefGoogle Scholar
  15. 15.
    Vollrath F, Porter D. Spider silk as archetypal protein elastomer. Soft Matter. 2006;2:377–85.CrossRefGoogle Scholar
  16. 16.
    Torres FG, Troncoso OP, Amaya E. The effect of water on the thermal transitions of fish scales from Arapaima gigas. Mater Sci Eng C. 2012;32:2212–4.CrossRefGoogle Scholar
  17. 17.
    Buehler MJ, Wong SY. Entropic Elasticity controls nanomechanics of single tropocollagen molecules. Biophys J. 2007;93:37–43.CrossRefGoogle Scholar
  18. 18.
    Misof K, Rapp G, Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys J. 1997;72:1376–81.CrossRefGoogle Scholar
  19. 19.
    Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. Fibrillar structure and mechanical properties of collagen. J Struct Biol. 1997;122:119–22.CrossRefGoogle Scholar
  20. 20.
    Freed AD, Doehring TD. Elastic model for crimped collagen fibrils. J Biomech Eng. 2005;127:587–93.CrossRefGoogle Scholar
  21. 21.
    Roeder BA, Kokini K. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002;124:214–22.CrossRefGoogle Scholar
  22. 22.
    Lagakos N, Jarzynski J, Cole JH, Bucaro JA. Frequency and temperature dependence of elastic moduli of polymers. J Appl Phys. 1986;59:4017–31.CrossRefGoogle Scholar
  23. 23.
    Feughelman M. Natural protein fibers. J Appl Polym Sci. 2002;83:489–507.CrossRefGoogle Scholar
  24. 24.
    Miles CA, Bailey AJ. Thermally labile domains in the collagen molecule. Micron. 2001;32:325–32.CrossRefGoogle Scholar
  25. 25.
    Wiegand N, Vámhidy L, Lőrinczy D. Differential scanning calorimetric examination of ruptured lower limb tendons in human. J Therm Anal Calorim. 2010;101:487–92.CrossRefGoogle Scholar
  26. 26.
    Willett TL, Labow RS, Avery NC, Michael LJ. Increased proteolysis of collagen in an in vitro tensile overload tendon model. Ann Biomed Eng. 2007;35:1961–72.CrossRefGoogle Scholar
  27. 27.
    Trębacz H, Wójtowicz K. Thermal stabilization of collagen molecules in bone tissue. Int J Biol Macromol. 2005;37:257–62.CrossRefGoogle Scholar
  28. 28.
    Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.CrossRefGoogle Scholar
  29. 29.
    Bigi A, Cojazzi G, Roveri N, Koch MHJ. Differential scanning calorimetry and X-ray diffraction study of tendon collagen thermal denaturation. Int J Biol Macromol. 1987;9:363–7.CrossRefGoogle Scholar
  30. 30.
    Miles CA, Burjanadze TV, Bailey AJ. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol. 1995;245:437–46.CrossRefGoogle Scholar
  31. 31.
    Bella J, Brodsky B, Berman HM. Hydration structure of a collagen peptide. Structure. 1995;3:893–906.CrossRefGoogle Scholar
  32. 32.
    Sionkowska A. Modification of collagen films by ultraviolet irradiation. Polym Degrad Stab. 2000;68:147–51.CrossRefGoogle Scholar
  33. 33.
    Sionkowska A, Kamińska A. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int J Biol Macrol. 1999;24:337–40.CrossRefGoogle Scholar
  34. 34.
    Miculescu F, Stan GE, Ciocan LT, Miculescu M, Berbecaru A, Antoniac I. Cortical bone as resource for producing biomimetic materials for clinical use. Dig J Nanomater Biostruct. 2012;7:1667–77.Google Scholar
  35. 35.
    Kopp J, Bonnet M, Renou JP. Effect of cross-linking on collagen-water interactions (a DSC investigation). Matrix. 1990;9:443–50.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Fernando G. Torres
    • 1
  • Omar P. Troncoso
    • 1
  • Maribella R. Montes
    • 1
  1. 1.Department of Mechanical EngineeringCatholic University of PeruLimaPeru

Personalised recommendations