Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1287–1295 | Cite as

Investigation of thermal stability, spectral, magnetic, and antimicrobial behavior for new complexes of Ni(II), Cu(II), and Zn(II) with a bismacrocyclic ligand

  • Cristina Bucur
  • Romana Cerc Korošec
  • Mihaela Badea
  • Larisa Calu
  • Mariana Carmen Chifiriuc
  • Nicoleta Grecu
  • Nicolae Stanică
  • Dana Marinescu
  • Rodica Olar


Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.


Complex Bismacrocycle One-pot condensation 1,3-Phenylenediamine Thermal behavior 



Support of the EU (ERDF) and Romanian Government, that allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—Nr. 19/01.03.2009, is gratefully acknowledged.


  1. 1.
    Liang X, Parkinson JA, Weishäupl M, Gould RO, Paisey SJ, Park H-s, Hunter TM, Blindauer CA, Parsons S, Sadler PJ. Structure and dynamics of metallomacrocycles: recognition of zinc xylyl–bicyclam by an HIV coreceptor. J Am Chem Soc. 2002;124:9105–12.CrossRefGoogle Scholar
  2. 2.
    Liang X, Sadler PJ. Cyclam complexes and their applications in medicine. Chem Soc Rev. 2004;33:246–66.CrossRefGoogle Scholar
  3. 3.
    Valks GC, McRobbie G, Lewis EA, Hubin TJ, Hunter TM, Sadler PJ, Pannecouque C, De Clercq E, Archibald SJ. Configurationally restricted bismacrocyclic CXCR4 receptor antagonists. J Med Chem. 2006;49:6162–5.CrossRefGoogle Scholar
  4. 4.
    Khan A, Nicholson G, Greenman J, Madden L, McRobbie G, Pannecouque C, De Clercq E, Ullom R, Maples DL, Maples RD, Silversides JD, Hubin TJ, Archibald SJ. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J Am Chem Soc. 2009;131:3416–7.CrossRefGoogle Scholar
  5. 5.
    Ross A, Soares DC, Covelli D, Pannecouque C, Budd L, Collins A, Robertson N, Parsons S, De Clercq E, Kennepohl P, Sadler PJ. Oxovanadium(IV) cyclam and bicyclam complexes: potential CXCR4 receptor antagonists. Inorg Chem. 2010;49:1122–32.CrossRefGoogle Scholar
  6. 6.
    Arjmand F, Aziz M. Synthesis and biophysical studies of bis-macrocyclic cobalt/copper(II) complexes having a pyridine spacer with CT DNA and 5′-GMP. Chem Biodivers. 2009;6:2275–89.CrossRefGoogle Scholar
  7. 7.
    Affani CR, Pélissier F, Aubertin AM, Dugat D. Bis-14-membered ring diketal diamines: synthesis and evaluation of their anti-HIV and anti-tumoral activities. Eur J Med Chem. 2009;44:3138–46.CrossRefGoogle Scholar
  8. 8.
    Rossiter CS, Mathews RA, del Mundo IMA, Morrow JR. Cleavage of a RNA analog containing uridine by a bifunctional dinuclear Zn(II) catalyst. J Inorg Biochem. 2009;103:64–71.CrossRefGoogle Scholar
  9. 9.
    Kang S-G, Ryu K, Jung S-K, Kim C-S. Template synthesis and characterization of copper(II) complexes of a polyaza non-macrocyclic or a bis(macrocyclic) ligand. Bull Korean Chem Soc. 1996;17:331–4.Google Scholar
  10. 10.
    Comba P, Lampeka YD, Nazarenko AY, Prikhod’ko AI, Pritzkow H. Interactions between copper(II) complexes of mono-, bis-, and tris(macrocyclic) ligands and inorganic or organic guests. Eur J Inorg Chem. 2002;6:1464–74.CrossRefGoogle Scholar
  11. 11.
    Kang S-G, Song J, Jeong JH. Synthesis and characterization of new unsaturated macrobicyclic and bis(macrocyclic) copper(II) complexes containing N–CH2–N linkages. Inorg Chim Acta. 2004;357:605–10.CrossRefGoogle Scholar
  12. 12.
    Singh AK, Panwar A, Singh R, Baniwal S. New bis-macrocyclic complexes with transition metal ions. Transit Met Chem. 2003;28:160–2.CrossRefGoogle Scholar
  13. 13.
    Salavati-Niasari M, Amiri A. Binuclear copper(II) complexes of new bis(macrocyclic) 16-membered pentaaza subunits are linked together by bridging nitrogen of amine: synthesis, characterization and catalytic activity. J Mol Catal A. 2005;235:114–21.CrossRefGoogle Scholar
  14. 14.
    Salavati-Niasari M, Bazarganipour M. Bis(macrocyclic) copper(II) complexes containing aromatic nitrogen–nitrogen linkers produced by in situ one pot template condensation reaction (IOPTCR): synthesis, characterization and catalytic oxidation of tetrahydrofuran. Inorg Chem Commun. 2006;9:332–6.CrossRefGoogle Scholar
  15. 15.
    Mochizuki K, Sugita T, Yamada F, Mochizuki N, Hayano K, Ohgami Y. New bis(macrocyclic) dinickel(II) complexes obtained by oxidation of bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,7-dien-6-yl)dinickel(II)perchlorate. Inorg Chim Acta. 2009;362:1204–8.CrossRefGoogle Scholar
  16. 16.
    Chandra S, Jain D, Ratnam B. Synthesis and spectroscopic characterization of copper(II) metal complexes of a 16 membered pentaaza (N5) bis(macrocyclic) complexes. J Chem Pharm Res. 2010;2:533–8.Google Scholar
  17. 17.
    Salavati-Niasari M. 16-Membered pentaaza bis(macrocyclic) nickel(II) complexes containing aromatic nitrogen–nitrogen linkers, {[Ni([16]aneN5)]2R}(ClO4)4: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. J Mol Catal A. 2007;272:207–12.CrossRefGoogle Scholar
  18. 18.
    Gherbeleu HV, Arion VB, Burgess J. Template synthesis of macrocyclic compounds. Weinheim: Wiley-VCH; 1999.CrossRefGoogle Scholar
  19. 19.
    Olar R, Badea M, Marinescu D, Calu L, Bucur C. Thermal behaviour of some new complexes with bismacrocyclic ligands as potential biological active species. J Therm Anal Calorim. 2011;105:571–5.CrossRefGoogle Scholar
  20. 20.
    Bucur C, Badea M, Calu L, Marinescu D, Grecu MN, Stanica N, Chifiriuc MC, Olar R. Thermal behaviour of some new complexes with decaazabismacrocyclic ligand as potential antimicrobial species. J Therm Anal Calorim. 2012;110:235–41.CrossRefGoogle Scholar
  21. 21.
    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.CrossRefGoogle Scholar
  22. 22.
    Choi HJ, Suh MP. Nickel(II) macrocyclic complexes with long alkyl pendant chain: synthesis, X-ray structure, and anion exchange property in the solid state. Inorg Chem. 2003;42:1151–7.CrossRefGoogle Scholar
  23. 23.
    Salavati-Niasari M, Davar F. Synthesis and characterization of nickel(II) complexes of 14-membered hexaaza macrocyclic ligands ‘‘3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane’’ produced by the in situ one-pot template reaction of formaldehyde and 1,2-phenylenediamine with alkyl or benzyl amine in the presence of the nickel(II) ion. Polyhedron. 2006;25:2127–34.CrossRefGoogle Scholar
  24. 24.
    Siddiqi ZA, Kumar S, Khalid M, Shahid M. Novel homo-bimetallic complexes of [N10] macrocyclic ligand modified with tetrapeptide function: biological activities, spectral and cyclic voltammetric studies. Spectrochim Acta A. 2009;72:970–4.CrossRefGoogle Scholar
  25. 25.
    Rastogi A, Nayan R. Studies on copper(II) complexes of some polyaza macrocycles derived from 1,2-diaminoethane. J Coord Chem. 2009;62:3366–76.CrossRefGoogle Scholar
  26. 26.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.Google Scholar
  27. 27.
    Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.Google Scholar
  28. 28.
    Chartres JD, Lindoy LF, Meehan GV. Transition and post-transition metal systems incorporating linked synthetic macrocycles as structural elements. Coord Chem Rev. 2001;216–217:249–86.CrossRefGoogle Scholar
  29. 29.
    Dong Y, Lindoy LF. A three-ring, linked cyclam derivative and its interaction with selected transition and post-transition metal ions. Coord Chem Rev. 2003;245:11–6.CrossRefGoogle Scholar
  30. 30.
    Gispert JB. Coordination chemistry. Weinheim: Wiley-VCH; 2008.Google Scholar
  31. 31.
    Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.CrossRefGoogle Scholar
  32. 32.
    Jóna E, Lajdová L’, Loduhová M, Lendvayová S, Pavlík V, Moncol’ J, Lizák P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands Part IV. Thermal and spectral properties of 2-chloro- and 2-bromobenzoato Cu(II) complexes with nicotinamide and different bonded water molecules. J Therm Anal Calorim. 2012;108:92–6.CrossRefGoogle Scholar
  33. 33.
    Aruna V, Sridevi N, Robinson PP, Manjua S, Yusuff KKM. Ni(II) and Ru(II) Schiff base complexes as catalysts for the reduction of benzene. J Mol Catal A. 2009;304:191–8.CrossRefGoogle Scholar
  34. 34.
    De Micco G, Bohé AE, Pasquevich DM. A thermogravimetric study of copper chlorination. J Alloy Compd. 2007;437:351–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Cristina Bucur
    • 1
  • Romana Cerc Korošec
    • 2
  • Mihaela Badea
    • 1
  • Larisa Calu
    • 1
  • Mariana Carmen Chifiriuc
    • 3
  • Nicoleta Grecu
    • 4
  • Nicolae Stanică
    • 5
  • Dana Marinescu
    • 1
  • Rodica Olar
    • 1
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Department of Inorganic Chemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania
  4. 4.National Institute of Materials PhysicsMăgurele-IlfovRomania
  5. 5.Romanian Academy, “Ilie Murgulescu” Physical Chemistry InstituteBucharestRomania

Personalised recommendations