Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1421–1429 | Cite as

Thermal, spectral, magnetic and antimicrobial behaviour of new Ni(II), Cu(II) and Zn(II) complexes with a hexaazamacrocyclic ligand

  • Florentina Pătraşcu
  • Mihaela Badea
  • Maria Nicoleta Grecu
  • Nicolae Stanică
  • Luminiţa Măruţescu
  • Dana Marinescu
  • Cezar Spînu
  • Cristian Tigae
  • Rodica Olar


New species of type MLCl2·nH2O (M:Ni, n = 6; M:Cu, n = 1.5 and M:Zn, n = 1; L: 1,8-bis(3′-ketopyridil)-1,3,6,8,10,13-hexaazacyclotetradecane, ligand resulted by 1,2-diaminoethane, nicotinamide and formaldehyde template condensation) were synthesised. The compounds were characterised by chemical analysis, ESI–MS, IR, NMR, UV–Vis-NIR and EPR spectroscopy as well as magnetic data at room temperature. The modifications in the IR and NMR spectra are in accordance with the condensation process. Electronic spectra indicate that Ni(II) adopts an octahedral stereochemistry while the surrounding of Cu(II) is square-pyramidal. The proposed stereochemistry was furthermore confirmed by magnetic moments and EPR spectrum at room temperature. The water is eliminated in one or two steps, respectively, while the oxidative degradation of the ligand and chloride decomposition occur in two steps. The final residues consist of the most stable metallic oxides as X-ray powder diffraction indicates. The newly synthesised compounds were evaluated for their antimicrobial effect against different bacterial and fungal strains.


Azamacrocyclic ligand Formaldehyde Nicotinamide One pot Thermal stability 



This paper was supported by the Sectorial Operational Programme Human Resources Development (SOP HRD), financed by the European Social Fund and by the Romanian Government under the contract number SOP HRD/107/1.5/S/82514. Support of the EU (ERDF) and Romanian Government that allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—Nr. 19/01.03.2009 is gratefully acknowledged.


  1. 1.
    Lawrance GA, Maeder M, Wilkes EN. Metal-directed macrocyclization reactions involving formaldehyde, amines and mono- or bi-functional methylene compounds. Rev Inorg Chem. 1993;13:199–232.CrossRefGoogle Scholar
  2. 2.
    Wainwright KP. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. Coord Chem Rev. 1997;166:35–90.CrossRefGoogle Scholar
  3. 3.
    Lindoy LF. The transition metal ion chemistry of linked macrocyclic ligands. Adv Inorg Chem. 1998;45:75–125.CrossRefGoogle Scholar
  4. 4.
    Hubin TJ. Synthesis and coordination chemistry of topologically constrained azamacrocycles. Coord Chem Rev. 2003;241:27–46.CrossRefGoogle Scholar
  5. 5.
    Lindoy LF, Meehan GV, Vasilescu IM, Kim HJ, Lee J-E, Lee SS. Transition and post-transition metal ion chemistry of dibenzo-substituted, mixed-donor macrocycles incorporating five donor atoms. Coord Chem Rev. 2010;254:1713–25.CrossRefGoogle Scholar
  6. 6.
    Mewis RE, Archibald SJ. Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev. 2010;254:1686–712.CrossRefGoogle Scholar
  7. 7.
    Kimura E, Sasada M, Shionoya M, Koike T, Kurosaki H, Shiro M. Structure and O2 uptake properties of a novel nickel(II) complex of pyridyl-pendant dioxocyclam [1-(2-pyridyl)methyl-5,7-dioxo-1,4,8,11-tetraazacyclotetradecane]. J Bioinorg Chem. 1997;2:74–82.Google Scholar
  8. 8.
    Bolm C, Meyer N, Raabe G, Weyhermüller T, Bothe E. A novel enantiopure proline-derived triazacyclononane: synthesis, structure and application of its manganese complex. Chem Commun. 2000;24:2435–6.CrossRefGoogle Scholar
  9. 9.
    Grenz A, Ceccarelli S, Bolm C. Synthesis and application of novel catalytically active polymers containing 1,4,7-triazacyclononanes. Chem Commun. 2001;18:1726–7.CrossRefGoogle Scholar
  10. 10.
    Hubin TJ, McCormick JM, Collinson SR, Perkins CM, Alcock NW, Kahol PK, Raghunathan A, Busch DH. New iron(II) and manganese(II) complexes of two ultra-rigid, cross-bridged tetraazamacrocycles for catalysis and biomimicry. J Am Chem Soc. 2000;122:2512–22.CrossRefGoogle Scholar
  11. 11.
    Mochizuki K, Manaka S, Takeda I, Kondo T. Synthesis and structure of [6,6′-Bi(5,7-dimethyl-l,4,8,11-tetraazacyclotetradecane)] dinickel(II) inflate and its catalytic activity for photochemical CO2 reduction. Inorg Chem. 1996;35:5132–6.CrossRefGoogle Scholar
  12. 12.
    Wieghardt K. The active sites in manganese-containing metalloproteins and inorganic model complexes. Angew Chem Int Ed Engl. 1989;28:1153–72.CrossRefGoogle Scholar
  13. 13.
    Tolman WB. Making and breaking the dioxygen O–O bond: new insights from studies of synthetic copper complexes. Acc Chem Res. 1997;30:227–37.CrossRefGoogle Scholar
  14. 14.
    Halcrow MA, Christou G. Biomimetic chemistry of nickel. Chem Rev. 1994;94:2421–81.CrossRefGoogle Scholar
  15. 15.
    Rossi P, Felluga F, Tecilla P, Formaggio F, Crisma M, Toniolo C, Scrimin P. A bimetallic helical heptapeptide as a transphosphorylation catalyst in water [7]. J Am Chem Soc. 1999;121:6948–9.CrossRefGoogle Scholar
  16. 16.
    Sissi C, Rossi P, Felluga F, Formaggio F, Palumbo M, Tecilla P, Toniolo C, Scrimin P. Dinuclear Zn2+ complexes of synthetic heptapeptides as artificial nucleases. J Am Chem Soc. 2001;123:3169–70.CrossRefGoogle Scholar
  17. 17.
    Young MJ, Chin J. Dinuclear copper(II) complex that hydrolyzes RNA. J Am Chem Soc. 1995;117:10577–8.CrossRefGoogle Scholar
  18. 18.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.CrossRefGoogle Scholar
  19. 19.
    Reichert DE, Lewis JS, Anderson CJ. Metal complexes as diagnostic tools. Coord Chem Rev. 1999;184:3–66.CrossRefGoogle Scholar
  20. 20.
    Thunus L, Lejeune R. Overview of transition metal and lanthanide complexes as diagnostic tools. Coord Chem Rev. 1999;184:125–55.CrossRefGoogle Scholar
  21. 21.
    Volkert WA, Hoffmann TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.CrossRefGoogle Scholar
  22. 22.
    Ronconi L, Sadler PJ. Using coordination chemistry to design new medicines. Coord Chem Rev. 2007;251:1633–48.CrossRefGoogle Scholar
  23. 23.
    Nirmala CG, Rahiman AK, Sreedaran S, Jegadeesh R, Raaman N, Narayanan V. Synthesis, characterization, crystal structure and antimicrobial activities of new trans N, N-substituted macrocyclic dioxocyclam and their copper(II) and nickel(II) complexes. Polyhedron. 2011;30:106–13.CrossRefGoogle Scholar
  24. 24.
    Kong D, Xie Y. Synthesis, structural characterization of tetraazamacrocyclic ligand, five-coordinated zinc(II) complex. Inorg Chim Acta. 2002;338:142–8.CrossRefGoogle Scholar
  25. 25.
    Olar R, Badea M, Stanica N, Cristurean E, Marinescu D. Synthesis, characterisation and thermal behaviour of some complexes with ligands having 1,3,4-thiadiazole moieties. J Therm Anal Calorim. 2005;82:417–22.CrossRefGoogle Scholar
  26. 26.
    Olar R, Badea M, Marinescu D, Lazar V, Chifiriuc C. Thermal behaviour of new Ni(II) and Cu(II) complexes with macrocyclic ligands functionalised with 1,2,4-triazole. J Therm Anal Calorim. 2009;97:315–21.CrossRefGoogle Scholar
  27. 27.
    Gaber M, Rehab AF, Badr-Eldeen DF. Spectral and thermal studies of new Co(II) and Ni(II) hexaaza and octaaza macrocyclic complexes. J Therm Anal Calorim. 2008;91:957–62.CrossRefGoogle Scholar
  28. 28.
    Bertini I, Gray HB, Stiefel EI, Valentine JS. Biological inorganic chemistry: structure and reactivity. Sausalito: University Science Books; 2007.Google Scholar
  29. 29.
    Demir S, Yilmaz VT, Sariboga B, Buyukgungor O, Mrozinski J. Metal(II) nicotinamide complexes containing succinato, succinate and succinic acid: synthesis, crystal structures, magnetic, thermal, antimicrobial and fluorescent properties. J Inorg Organomet Polym. 2010;20:220–8.CrossRefGoogle Scholar
  30. 30.
    Patel NB, Shaikh FM. New 4-thiazolidinones of nicotinic acid with 2-amino-6-methylbenzothiazole and their biological activity. Sci Pharm. 2010;78:753–65.CrossRefGoogle Scholar
  31. 31.
    Shrivastav A, Singh NK, Singh SM. Synthesis, characterization and antitumor studies of Mn(II), Ni(II), Cu(II) and Zn(II) complexes of N-nicotinoyl-N′-o-hydroxythiobenzhydrazide. Biometals. 2003;16:311–20.CrossRefGoogle Scholar
  32. 32.
    Saviuc C, Grumezescu AM, Holban A, Bleotu C, Chifiriuc C, Balaure P, Lazar V. Phenotypical studies of raw and nanosystem embedded Eugenia carryophyllata buds essential oil antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus strains. Biointerface Res Appl Chem. 2011;1:111–8.Google Scholar
  33. 33.
    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.CrossRefGoogle Scholar
  34. 34.
    Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  35. 35.
    Köse DA, Necefoğlu H. Synthesis and characterization of bis (nicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II). J Therm Anal Calorim. 2008;93:509–14.CrossRefGoogle Scholar
  36. 36.
    Dziewułska-Kulaczkowska A, Mazur L, Ferenc W. Thermal, spectroscopic and structural studies of Zn(II) complex with nicotinamide. J Therm Anal Calorim. 2009;96:255–60.CrossRefGoogle Scholar
  37. 37.
    Siddiqi ZA, Kumar S, Khalid M, Shahid M. Novel homo-bimetallic complexes of [N10] macrocyclic ligand modified with tetrapeptide function: biological activities, spectral and cyclic voltammetric studies. Spectrochim Acta, Part A. 2009;72:970–4.CrossRefGoogle Scholar
  38. 38.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.Google Scholar
  39. 39.
    Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.Google Scholar
  40. 40.
    Gispert JB. Coordination chemistry. Weinheim: Wiley-VCH; 2008.Google Scholar
  41. 41.
    Hathaway BJ. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct Bond. 1984;57:55–118.CrossRefGoogle Scholar
  42. 42.
    Rotaru P, Scorei R, Harabor A, Dumitru M. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506:8–13.CrossRefGoogle Scholar
  43. 43.
    Badea M, Olar R, Marinescu D, Segal E, Rotaru A. Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim. 2007;88:317–21.CrossRefGoogle Scholar
  44. 44.
    Bujdosova Z, Gyoryova K, Mudronova D, Hudecova D, Kovarova J. Thermoanalytical investigation and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylates with N-donor ligands. J Therm Anal Calorim. 2012;110:167–76.CrossRefGoogle Scholar
  45. 45.
    Tatucu M, Rotaru P, Rau I, Spinu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.CrossRefGoogle Scholar
  46. 46.
    Kropidlowska A, Rotaru A, Strankowski M, Becker B, Segal E. Thermal stability and non-isothermal decomposition kinetics of a heteroleptic cadmium(II) complex, potential precursor for semiconducting CdS layers. J Therm Anal Calorim. 2008;91:903–9.CrossRefGoogle Scholar
  47. 47.
    Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu(II) 2,20-dihydroxy azobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.CrossRefGoogle Scholar
  48. 48.
    Scorei R, Rotaru P. Calcium fructoborate-potential anti-inflammatory agent. Biol Trace Elem Res. 2011;143:1223–38.CrossRefGoogle Scholar
  49. 49.
    Rotaru A, Mietlarek-Kropidlowska A, Constantinescu C, Scarisoreanu N, Dumitru M, Strankowski M, Rotaru P, Ion V, Vasiliu C, Becker B, Dinescu M. CdS thin films obtained by thermal treatment of cadmium (II) complex precursor deposited by MAPLE technique. Appl Surf Sci. 2009;255:6786–9.CrossRefGoogle Scholar
  50. 50.
    Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta. 2010;498:81–91.CrossRefGoogle Scholar
  51. 51.
    Constantinescu C, Morintale E, Ion V, Moldovan A, Luculescu C, Dinescu M, Rotaru P. Thermal, morphological and optical investigations of Cu(DAB)2 thin films produced by matrix-assisted pulsed laser evaporation and laser-induced forward transfer for sensor development. Thin Solid Films. 2012;520:3904–9.CrossRefGoogle Scholar
  52. 52.
    Ninković DB, Janjić GV, Zarić SD. Crystallographic and ab initio study of pyridine stacking interactions. Local nature of hydrogen bond effect in stacking interactions. Cryst Growth Design. 2012;12:1060–3.CrossRefGoogle Scholar
  53. 53.
    Gaber M, El-Hefnawy GB, El-Borai MA, Mohamed NF. Synthesis, spectral and thermal studies of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complex dyes based on hydroxyquinoline moiety. J Therm Anal Calorim. 2012;109:1397–405.CrossRefGoogle Scholar
  54. 54.
    Jóna E, Lajdová L’, Loduhová M, Lendvayová S, Pavlík V, Moncol’ J, Lizák P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands Part IV. Thermal and spectral properties of 2-chloro- and 2-bromobenzoato Cu(II) complexes with nicotinamide and different bonded water molecules. J Therm Anal Calorim. 2012;108:92–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Florentina Pătraşcu
    • 1
  • Mihaela Badea
    • 1
  • Maria Nicoleta Grecu
    • 2
  • Nicolae Stanică
    • 3
  • Luminiţa Măruţescu
    • 4
  • Dana Marinescu
    • 1
  • Cezar Spînu
    • 5
  • Cristian Tigae
    • 5
  • Rodica Olar
    • 1
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.National Institute of Materials PhysicsMăgurele-IlfovRomania
  3. 3.Romanian Academy“Ilie Murgulescu” Physical Chemistry InstituteBucharestRomania
  4. 4.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania
  5. 5.Department of Chemistry, Faculty of Exact SciencesUniversity of CraiovaCraiovaRomania

Personalised recommendations