Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1037–1047 | Cite as

Poly(vinyl pyrrolidone)–poloxamer-188 solid dispersions prepared by hot melt extrusion

Thermal properties and release behavior
  • Emmanouil Fousteris
  • Petroula A. Tarantili
  • Evangelos Karavas
  • Dimitrios Bikiaris


Poly(vinyl pyrrolidone) (PVP)/poloxamer-188 blends were used as appropriate carriers for the preparation of solid dispersions by hot melt extrusion using aripiprazole (ARIP) as a poor water-soluble model drug. The physical state of ARIP in solid dispersions and its dissolution characteristics were tested for different drug contents and various PVP-to-poloxamer ratios. From TG analysis it was found that all materials were stable at the tested extrusion temperature conditions (110–120 °C) while amorphous drug dispersions were prepared in all cases, due to the miscibility of the polymer matrix with ARIP drug. Furthermore, hydrogen bonds were identified between ARIP (>N–H) and PVP (>C=O) using FT-IR analysis. Finally, ARIP dissolution rate from SDs was pH dependant and increased as the drug content decreased.


Melt mixing Solid dispersions Aripiprazole PVP Poloxamer-188 Dissolution enhancement 


  1. 1.
    Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54:107–17.CrossRefGoogle Scholar
  2. 2.
    Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, Martin C, McGinity JW. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33(10):1043–57.CrossRefGoogle Scholar
  3. 3.
    Repka MA, Majumdar S, Battu SK, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5:1357–76.CrossRefGoogle Scholar
  4. 4.
    Bikiaris D. Solid dispersions. Part I: recent evolutions & future opportunities in manufacturing methods for dissolution rate enhancement of poorly water soluble drugs. Expert Opin Drug Deliv. 2011;8(11):1501–19.CrossRefGoogle Scholar
  5. 5.
    Bikiaris D. Solid dispersions. Part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water soluble drugs. Expert Opin Drug Deliv. 2011;8(12):1663–80.CrossRefGoogle Scholar
  6. 6.
    McGinity JW, Zhang F, Koleng JJ, Repka MA. Hot-melt extrusion as a pharmaceutical process. Am Pharm Rev. 2001;4:25–37.Google Scholar
  7. 7.
    Hughey JR, Di Nunzio JC, Bennett RC, Brough C, Miller DA, Ma H, Williams RO III, McGinity JW. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and kinetisol® dispersing. AAPS PharmSciTech. 2010;11:760–74.CrossRefGoogle Scholar
  8. 8.
    Andrews GP, Abudiak OA, Jones DS. Physicochemical characterization of hot melt extruded bicalutamide–polyvinylpyrrolidone solid dispersions. J Pharm Sci. 2010;99:1322–35.CrossRefGoogle Scholar
  9. 9.
    Essa EA, Balata GF. Preparation and characterization of domperidone solid dispersions. J Pharm Sci. 2012;25(4):783–91.Google Scholar
  10. 10.
    Rao M, Mandage Y, Khole I, Munjapara G. Characterization of solid dispersions of simvastatin with PVP K30 and poloxamer 188. Indian J Pharm Educ Res. 2011;45(2):145–52.Google Scholar
  11. 11.
    DrugBank, Aripiprazole, Open data drug & drug target database,
  12. 12.
    Karavas E, Georgarakis E, Bikiaris D. Felodipine nanodispersions as active core for predictable pulsatile chronotherapeutics using PVP/HPMC blends as coating layer. Int J Pharm. 2006;313:189–97.CrossRefGoogle Scholar
  13. 13.
    Papageorgiou GZ, Bikiaris D, Karavas E, Politis S, Docoslis A, Park Y, Stergiou A, Georgarakis E. Effect of physical state and particle size distribution on dissolution enhancement of Nimodipine/PEG solid dispersions prepared by melt mixing and solvent evaporation. APPS J. 2006;8:623–31.Google Scholar
  14. 14.
    Bikiaris D, Karavelidis V, Karavas E. Effectiveness of various drug carriers in controlled release formulations of raloxifene HCl prepared by melt mixing. Curr Drug Deliv. 2009;6:425–36.CrossRefGoogle Scholar
  15. 15.
    Papadimitriou SA, Barmpalexis P, Karavas E, Bikiaris D. Optimizing the ability of PVP/PEG mixtures to be used as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique using artificial neural networks. I. Eur J Pharm Biopharm. 2012;82:175–86.CrossRefGoogle Scholar
  16. 16.
    Zhang J, Bunker M, Parker A, Madden-Smith CE, Patel N, Roberts CJ. The stability of solid dispersions of felodipine in polyvinylpyrrolidone characterized by nanothermal analysis. Int J Pharm. 2011;414:210–7.CrossRefGoogle Scholar
  17. 17.
    Yoshihashi Y, Yonemochi E, Maeda Y, Terada K. Prediction of the induction period of crystallization of naproxen in solid dispersion using differential scanning calorimetry. J Therm Anal Calorim. 2010;99:15–9.CrossRefGoogle Scholar
  18. 18.
    Vyas V, Sancheti P, Karekar P, Shah M, Pore Y. Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407. Acta Pharm. 2009;59:453–61.CrossRefGoogle Scholar
  19. 19.
    Saritha A, Shastri N. Preparation, physico chemical characterization of solid dispersions of tenoxicam with poloxamer. J Pharm Sci Technnol. 2010;2:308–11.Google Scholar
  20. 20.
    Karavas E, Georgarakis M, Docoslis A, Bikiaris D. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly-water soluble drug within a polymer matrix. Int J Pharm. 2007;340:76–83.CrossRefGoogle Scholar
  21. 21.
    Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, Gupta V, Ma C, Mahajan N, Akrami A, Surapaneni S. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol Pharmacol. 2008;5:981–93.CrossRefGoogle Scholar
  22. 22.
    Krause S, Iskander M. Phase separation in styrene-a-methyl styrene block copolymers. In: Klempner D, Frisch K, editors. Polymer Science and Technology. New York: Plenum Press; 1997. p. 231–43.Google Scholar
  23. 23.
    Qiana F, Huanga J, Zhub Q, Haddadina R, Gawela J, Garmisea R, Hussaina M. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395:232–5.CrossRefGoogle Scholar
  24. 24.
    Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: a comparative study. J Appl Polym Sci. 2006;102:460–71.CrossRefGoogle Scholar
  25. 25.
    Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. Int J Pharm. 2012;429:58–68.CrossRefGoogle Scholar
  26. 26.
    Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug Ritonavir. AAPS PharmSciTech. 2010;11:518–27.CrossRefGoogle Scholar
  27. 27.
    Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108:219–26.CrossRefGoogle Scholar
  28. 28.
    Ambrus R, Aigner Z, Catenacci L, Bettinetti G, Szabó-Révész P, Sorrenti M. Physico-chemical characterization and dissolution properties of nifluminic acid–cyclodextrin–PVP ternary systems. J Therm Anal Calorim. 2011;104:291–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Emmanouil Fousteris
    • 1
  • Petroula A. Tarantili
    • 1
  • Evangelos Karavas
    • 2
  • Dimitrios Bikiaris
    • 3
  1. 1.Laboratory of Polymer Technology, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Pharmathen S.A., Pharmaceutical IndustryAttikiGreece
  3. 3.Laboratory of Polymer Chemistry and Technology, Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations