Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 1, pp 329–337 | Cite as

The effects of reactive organoclay on the thermal, mechanical, and microstructural properties of polymer/layered silicate nanocomposites based on chiral poly(amide-imide)s

  • Shadpour Mallakpour
  • Mohammad Dinari


Considering the importance of the nanocomposites, the present work focuses on some new hybrid materials prepared by introducing reactive organoclay (OC) into the chiral poly(amide-imide) (PAI) matrix. At first, Cloisite Na+ was modified with protonated l-isoleucine amino acid. Then, PAI containing phenylalanine was synthesized via solution polycondensation of chiral diacid chloride with 4,4′-diaminodiphenylsulfone and was characterized with Fourier transform infrared (FTIR) and 1H NMR techniques. At last, PAI/OC nanocomposite films containing 2, 5, 10, and 15 % of OC were prepared via solution intercalation method. The effect of OC dispersion and the interaction between OC and polymer chains on the properties of nanocomposites were investigated using FTIR, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, tensile testing of thin films, and thermogravimetry analysis techniques. The thermal stability of hybrids such as the decomposition temperature and mass residue at 800 °C was improved. Mechanical data indicated improvement in the tensile strength of the nanocomposites with OC loading up to 10 wt%. The transparency of the hybrid films was investigated by means of UV–Vis spectra.


Thermogravimetric analysis Organomodified clay Poly(amide-imide) Layered silicate nanocomposites Isoleucine amino acid 



We wish to express our gratitude to the Research Affairs Division at Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC), and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.


  1. 1.
    Tingaut P, Zimmermann T, Lopez-Suevos F. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules. 2010;11:454–64.CrossRefGoogle Scholar
  2. 2.
    Singhal R, Datta M. Studies on the development of biodegradable poly(HEMA)/Cloisite nanocomposites. Polym Compos. 2009;30:887–90.CrossRefGoogle Scholar
  3. 3.
    Sanda F, Endo T. Syntheses and functions of polymers based on amino acids. Macromol Chem Phys. 1999;200:2651–61.CrossRefGoogle Scholar
  4. 4.
    Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci. 2002;27:87–133.CrossRefGoogle Scholar
  5. 5.
    Mallakpour S, Dinari M. Preparation of thermally stable and optically active organosoluble aromatic polyamides containing l-leucine amino acid under green conditions. Polym Bull. 2009;63:623–35.CrossRefGoogle Scholar
  6. 6.
    Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater. 1996;8:29–35.CrossRefGoogle Scholar
  7. 7.
    Biswas M, Sinha RS. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv Polym Sci. 2001;155:167–221.CrossRefGoogle Scholar
  8. 8.
    Magaraphan R, Lilayuthalert W, Sirivat A, Schwank JW. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Compos Sci Technol. 2001;61:1253–64.CrossRefGoogle Scholar
  9. 9.
    Ito F, Uchidab Y, Murakami Y. Facile technique for preparing organic–inorganic composite particles: monodisperse poly(lactide-co-glycolide) (PLGA) particles having silica nanoparticles on the surface. Colloids Surf A. 2010;361:109–17.CrossRefGoogle Scholar
  10. 10.
    Wu CL, Zhang MQ, Rong MZ, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol. 2002;62:1327–40.CrossRefGoogle Scholar
  11. 11.
    Unnikrishnan L, Mohanty S, Nayak SK, Ali A. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: effect of organoclay on thermal, mechanical and flammability properties. Mater Sci Eng A. 2011;528:3943–51.CrossRefGoogle Scholar
  12. 12.
    Utracki LA. Clay-containing polymeric nanocomposites, vol. 1. United Kingdom: Rapra Technology Limited; 2004.Google Scholar
  13. 13.
    Ke YC, Stroeve P. Polymer-layered silicate and silica nanocomposites. Amsterdam: Elsevier; 2005.Google Scholar
  14. 14.
    Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.CrossRefGoogle Scholar
  15. 15.
    Hussain F, Mehdi H, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40:1511–65.CrossRefGoogle Scholar
  16. 16.
    Lazzara G, Milioto S. Dispersions of nanosilica in biocompatible copolymers. Polym Degrad Stab. 2010;95:610–7.CrossRefGoogle Scholar
  17. 17.
    Chen B, Evans JRG. Mechanical properties of polymer-blend nanocomposites with organoclays: polystyrene/ABS and high impact polystyrene/ABS. J Polym Sci B. 2011;49:443–54.CrossRefGoogle Scholar
  18. 18.
    Chrissopoulou K, Anastasiadis SH. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J. 2011;47:600–13.CrossRefGoogle Scholar
  19. 19.
    Chen B, Evans JRG. Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydr Polym. 2005;61:455–63.CrossRefGoogle Scholar
  20. 20.
    Kokabi M, Sirousazar M, Hassan ZM. PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J. 2007;43:773–81.CrossRefGoogle Scholar
  21. 21.
    Burgaz E, Lian HQ, Alonso RH, Estevez L, Kelarakis A, Giannelis EP. Nafion-clay hybrids with a network structure. Polymer. 2009;50:2384–92.CrossRefGoogle Scholar
  22. 22.
    Hedley CB, Yuan G, Theng BKG. Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl Clay Sci. 2007;35:180–8.CrossRefGoogle Scholar
  23. 23.
    Dunkerley E, Koerner H, Vaia RA, Schmidt D. Structure and dynamic mechanical properties of highly oriented PS/clay nanolaminates over the entire composition range. Polymer. 2011;52:1163–71.CrossRefGoogle Scholar
  24. 24.
    Ramesh S, Sivasamy A, Alagar M, Chandrasekar F. Synthesis and characterization of poly(n-vinyl-2-pyrrolidone)-organo-modified montmorillonite (OMMT) clay hybrid nanocomposites. J Compos Mater. 2011;45:1483–9.CrossRefGoogle Scholar
  25. 25.
    Zhao F, Wana C, Baoa X, Kandasubramanian B. Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsequioxane. J Colloid Interface Sci. 2009;333:164–70.CrossRefGoogle Scholar
  26. 26.
    Kollar T, Palinko I, Kiricsi I. Effect of heat treatment on amino acid intercalated in montmorillonite. J Therm Anal Calorim. 2005;79:533–5.CrossRefGoogle Scholar
  27. 27.
    Mallakpour S, Dinari M. Preparation and characterization of new organoclays using natural amino acids and Cloisite Na+. Appl Clay Sci. 2011;51:353–9.CrossRefGoogle Scholar
  28. 28.
    Sroog CE. Polyimides. Prog Polym Sci. 1991;16:561–694.CrossRefGoogle Scholar
  29. 29.
    Babooram K, Francis B, Bissessur R, Narain R. Synthesis and characterization of novel (amide-imide)-silica composites by the sol-gel process. Compos Sci Technol. 2008;68:617–24.CrossRefGoogle Scholar
  30. 30.
    Hsiao SH, Liou GS, Kung YC, Lee YJ. Synthesis and characterization of electrochromic poly(amide-imide)s based on the diimide-diacid from 4,4-diamino-4-methoxytriphenylamine and trimellitic anhydride. Eur Polym J. 2010;46:1355–66.CrossRefGoogle Scholar
  31. 31.
    Setiawan L, Wang R, Li K, Fane AG. Fabrication of novel poly(amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci. 2011;369:196–205.CrossRefGoogle Scholar
  32. 32.
    Yu Y, Cai M, Zhang Y. Study on synthesis of novel soluble aromatic polyamides with pendant cyano groups. Polym Bull. 2010;65:309–18.CrossRefGoogle Scholar
  33. 33.
    Liaw D, Hsu P, Liaw B. Synthesis and characterization of novel polyamide-imides containing noncoplanar 2,2-dimethyl-4,4-biphenylene unit. J Polym Sci Polym Chem. 2001;39:63–70.CrossRefGoogle Scholar
  34. 34.
    Tagle LH, Terraza CA, Leiva A, Yazigi N, Lopez L. Poly(imide-amide)s and poly(imide-ester)s obtained from N, N-(4,4-Me, R-diphthaloyl)-bis-glycine acid dichloride (R 5 Me, Et): synthesis, characterization, and thermal studies. J Appl Polym Sci. 2010;117:1526–34.Google Scholar
  35. 35.
    Mallakpour S, Asadi P. Synthesis and structural characterization of novel bionanocomposite poly(ester-imide)s containing TiO2 nanoparticles, S-valine, and l-tyrosine amino acids moieties. Polym Bull. 2012;68:53–67.CrossRefGoogle Scholar
  36. 36.
    Mallakpour S, Dinari M. Insertion of novel optically active poly(amide-imide) chains containing pyromellitoyl-bis-l-phenylalanine linkages into the nanolayered silicates modified with l-tyrosine through solution intercalation. Polymer. 2011;52:2514–23.CrossRefGoogle Scholar
  37. 37.
    Zhao F, Wana C, Baoa X, Kandasubramanian B. Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsequioxane. J Colloid Interface Sci. 2009;333:164–70.CrossRefGoogle Scholar
  38. 38.
    Mallakpour S, Dinari M. Preparation, characterization, and thermal properties of organoclay hybrids based on trifunctional natural amino acids. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2375-6.Google Scholar
  39. 39.
    Xi Y, Martens W, He H, Frost RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethy- lammonium bromide. J Therm Anal Calorim. 2011;81:91–7.CrossRefGoogle Scholar
  40. 40.
    Fajnor VS, Hlavaty V. Thermal stability of clay/organic inter- calation complexes. J Therm Anal Calorim. 2002;67:113–8.CrossRefGoogle Scholar
  41. 41.
    Pereira S, Rocha L, Nova′k C, Nascimento RSV. Clays basal spacings effect on fire retardancy of polymers by TG/DTA. J Therm Anal Calorim. 2011;106:535–9.CrossRefGoogle Scholar
  42. 42.
    Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR. Poly-mer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta. 2007;453:75–96.CrossRefGoogle Scholar
  43. 43.
    Van Krevelen DW, Hoftyzer PJ. Properties of polymers. 3rd ed. New York: Elsevier Scientific Publishing; 1976.Google Scholar
  44. 44.
    Ugur SS, Sarıısık M, Aktas AH. Nano-Al2O3 multilayer film deposition on cotton fabrics by layer-by-layer deposition method. Mater Res Bull. 2011;46:1202–12.CrossRefGoogle Scholar
  45. 45.
    Johnson PR. A general correlation of the flammability of natural and synthetic polymers. J Appl Polym Sci. 1974;18:491–504.CrossRefGoogle Scholar
  46. 46.
    Chang JH, Park KM, Cho D, Yang HS, Ihn K. Preparation and characterization of polyimide nanocomposite with different organomontmorillonites. J Polym Eng Sci. 2001;41:1514–20.CrossRefGoogle Scholar
  47. 47.
    Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–41.CrossRefGoogle Scholar
  48. 48.
    Tsai JL, Huang JC. Strain rate effect on mechanical behaviors of nylon 6-clay nanocomposites. J Compos Mater. 2006;40:925–38.CrossRefGoogle Scholar
  49. 49.
    Chen L, Wong SC. Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci. 2003;88:3298–306.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Organic Polymer Chemistry Research LaboratoryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations