Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 787–791 | Cite as

Magnesium boride sintered as high-energy fuel

Article

Abstract

Boron was chosen as fuel owing to its excellent thermodynamic values for combustion. The difficulty of the boron in combustion is the formation of a surface oxide layer, which postpones the combustion process, reducing the performance of the rocket engine. In this paper, magnesium boride was sintered as high-energy fuel as a substitute for boron. The combustion heat and efficiency of magnesium boride and boron were determined using oxygen bomb calorimeter. The combustion characteristics of magnesium boride were investigated by thermal analysis, chemical analysis, XRD, and EDS. Results show that the combustion performance of magnesium boride are better than that of amorphous boron in oxygenated environments. The evaporation of magnesium in magnesium boride combustion process prevent the formation of a closed oxide layer, leading to higher combustion efficiency.

Keywords

Borides Sintering Combustion efficiency Decomposition Differential thermal analysis 

References

  1. 1.
    King MK. Ignition and combustion of boron particles and clouds. J Spacecraft. 1982;19:294–306.CrossRefGoogle Scholar
  2. 2.
    Kuo KK. Combustion of boron-based solid propellants and solid fuels. Boca Raton: CRC Press; 1993.Google Scholar
  3. 3.
    Liu TK, Luh SP, Perng HC. Effect of boron particles surface coating on combustion of solid propellants for ducted rockets. Propellants, Explos, Pyrotech. 1991;16:156–66.CrossRefGoogle Scholar
  4. 4.
    Yeh CL. Ignition and combustion of boron particles. The Pennsylvania State University, Ph.D Thesis; 1995.Google Scholar
  5. 5.
    Hsia H. Air-augmented combustion of boron and boron-metal alloys. Air Force Research Lab, Final Rept, AFR DL-TR-71-80; 1971.Google Scholar
  6. 6.
    Mestwerdt R, Selzer H. Experimental investigation of boron/lithium combustion. AIAA J. 1975;14:100–2.CrossRefGoogle Scholar
  7. 7.
    Schoenitz M, Drezin EL, Shtessel E. Constant volume explosions of aerosols of metallic mechanical alloys and powder blends. J Propuls Power. 2003;19:405–12.CrossRefGoogle Scholar
  8. 8.
    Mota JM, Abenojar J, Martinez MA, Velasco F, Criado AJ. Borides and vitreous compounds sintered as high-energy fuels. J Solid State Chem. 2004;177:619–27.CrossRefGoogle Scholar
  9. 9.
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410:63–4.CrossRefGoogle Scholar
  10. 10.
    Chądzyński GW, Staszczuk P, Sternik D, Blachnio M. Studies of physico-chemical properties and fractal dimensions of MgB2 superconductor surface. J Therm Anal Calorim. 2012;108:985–9.CrossRefGoogle Scholar
  11. 11.
    Yan SC, Yan G, Liu CF, Lu YF, Zhou L. Experimental study on the phase formation for the Mg-B system in Ar atmosphere. J Alloys Compd. 2007;437:298–301.CrossRefGoogle Scholar
  12. 12.
    Lee S. Crystal growth of MgB2. Physica C. 2003;385:31–41.CrossRefGoogle Scholar
  13. 13.
    Fan ZY, Hinks DG, Newman N, Rowell JM. Experimental study of MgB2 decomposition. Appl Phys Lett. 2001;79:87–9.CrossRefGoogle Scholar
  14. 14.
    Brutti S, Ciccioli A, Balducci G, Gigli G. Vaporization thermodynamics of MgB2 and MgB4. Appl Phys Lett. 2002;80:2892–4.CrossRefGoogle Scholar
  15. 15.
    Brutti S, Balducci G, Gigli G, Ciccioli A, Manfrinetti P, Palenzona A. Thermodynamic and kinetic aspects of decomposition of MgB2 in vacuum: implication for optimization of synthesis conditions. J Cryst Growth. 2006;289:578–86.CrossRefGoogle Scholar
  16. 16.
    Spear KE. Phase diagrams of binary Mg-alloys. Materials Park, Ohio: ASM International; 1988.Google Scholar
  17. 17.
    Liu ZK, Zhong Y, Schlom DG, Xi XX, Li Q. Computational thermodynamic modeling of the Mg-B system. Calphad. 2001;25:299–303.CrossRefGoogle Scholar
  18. 18.
    Liu ZK, Schlom DG, Li Q, Xi XX. Thermodynamics of the Mg-B system: implications for the decomposition of MgB2 thin films. Appl Phys Lett. 2001;78:3678–80.CrossRefGoogle Scholar
  19. 19.
    Moiseev GK, Ivanovskii AL. Thermodynamic properties and thermal stability of magnesium borides. Inorg Mater. 2005;41:1061–6.CrossRefGoogle Scholar
  20. 20.
    Kim S, Stone DS, Cho JI, Kang CS, Bae JC. Phase stability determination of the Mg-B binary system using the CAPHAD method and ab initio calculations. J Alloys Compd. 2009;470:85–9.CrossRefGoogle Scholar
  21. 21.
    Balducci G, Brutti S, Ciccioli A, Gigli G, Manfrinetti P, Palenzona A, Butman MF, Kudin L. Thermodynamics of the intermediate phases in the Mg-B system. J Phys Chem Solids. 2005;66:292–7.CrossRefGoogle Scholar
  22. 22.
    Üçyıldız A, Girgin İ. Controlled synthesis, characterization and thermal properties of Mg2B2O5. Cent Eur J Chem. 2010;8:758–65.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations