Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 843–847 | Cite as

Effect of the thermal treatment conditions on the formation of zinc ferrite nanocomposite, ZnFe2O4, by sol–gel method

  • Mohammad Hossein HabibiEmail author
  • Amir Hossein Habibi
Article

Abstract

Zinc ferrite nanocomposite was synthesized via thermal decomposition of zinc acetate and iron nitrate at three different temperatures (350, 450, and 550 °C). The influence of the thermal decomposition of precursors on the formation zinc ferrites was studied by differential thermal gravimetry and thermogravimetry (TG). The TG curve shows two steps for the thermal decomposition with mass loss of 17.3 % at 78 °C and 63.3 % at 315 °C. The prepared zinc ferrites nanocomposite was characterized by X-ray diffraction and scanning electron microscopy. The X-ray diffractograms of ZnFe2O4 shows that a crystalline phase, spinel system is formed. SEM micrograph of the zinc ferrite nanocomposite indicates the formation of uniformly spherical 48-nm nanograins. The properties of the zinc ferrite phase were strongly dependent on their calcinations temperature and molar ratio of precursors.

Keyword

Zinc ferrite Thermal decomposition Iron precursor Thermal properties Nanostructure 

Notes

Acknowledgements

The authors wish to thank the University of Isfahan for financially supporting this work.

References

  1. 1.
    Gedam NN, Padole PR, Rithe SK, Chaudhari GN. Ammonia gas sensor based on a spinel semiconductor, Co0.8Ni0.2Fe2O4 nanomaterial. J Sol–Gel Sci Technol. 2009;50:296–300.CrossRefGoogle Scholar
  2. 2.
    Kamble RC, Shaikh PA, Kamble SS, Kolekar YD. Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J Alloys Compd. 2009;478:599–603.CrossRefGoogle Scholar
  3. 3.
    Sedlar M, Pust L. Preparation of cobalt doped nickel ferrite thin films on optical fibres by dip-coating technique. Ceram Int. 1995;21:21–7.CrossRefGoogle Scholar
  4. 4.
    Chen Z, Gao L. Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater Sci Eng B. 2007;141:82–6.CrossRefGoogle Scholar
  5. 5.
    Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90:669–72.CrossRefGoogle Scholar
  6. 6.
    More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94(1):63–7.CrossRefGoogle Scholar
  7. 7.
    Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3.6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96(1):53–7.Google Scholar
  8. 8.
    Gonsalves LR, Verenkar VMS, Mojumdar SC. Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J Therm Anal Calorim. 2010;100:789–92.CrossRefGoogle Scholar
  9. 9.
    Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3.6N2H4: a precursor for NiMn2O4 nano-particles. J Therm Anal Calorim. 2006;86(3):605–8.CrossRefGoogle Scholar
  10. 10.
    Habibi MH, Askari E. Thermal and structural studies of zinc zirconate nanoscale composite derived from sol–gel process: the effects of heat-treatment on properties. J Therm Anal Calorim. 2012; doi: 10.1007/s10973-012-2205-x.
  11. 11.
    Habibi MH, Askari E. The effect of operational parameters on the photocatalytic degradation of CI reactive yellow 86 textile dye using manganese zinc oxide nanocomposite thin films. J Adv Oxid Technol. 2011;14:190–5.Google Scholar
  12. 12.
    Wu JJ, Tseng CH. Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B. 2006;66:51–7.CrossRefGoogle Scholar
  13. 13.
    Habibi MH, Mikhak M. Synthesis of nanocrystalline zinc titanate ecandrewsite by Sol–Gel: optimization of heat treatment condition for red shift sensitization. Curr Nanosci. 2010;7:603–7.CrossRefGoogle Scholar
  14. 14.
    Iliev V, Tomova D, Todorovska R, Oliver D, Petrov L, Todorovsky D, Unova-Bujnova M. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. Appl Catal A. 2006;313:115–20.CrossRefGoogle Scholar
  15. 15.
    Habibi MH, Sheibani R. Preparation and characterization of nanocomposite ZnO–Ag thin film containing nano-sized Ag particles: influence of preheating, annealing temperature and silver content on characteristics. J Sol–Gel Sci Technol. 2010;54:195–202.CrossRefGoogle Scholar
  16. 16.
    Habibi MH, Sheibani R. Removal of 2-mercaptobenzoxazole from water as model of odorous mercaptan compounds by a heterogenous photocatalytic process using Ag–ZnO nanocomposite coated thin film on glass plate. Bull Environ Contam Toxicol. 2010;85:589–92.CrossRefGoogle Scholar
  17. 17.
    Habibi MH, Sheibani R. Photocatalytic oxidation of four model mercaptans from aquatic environment using Ag–ZnO nanocomposite thin film for odor control. J Adv Oxid Technol. 2010;13:192–9.Google Scholar
  18. 18.
    Habibi MH, Sheibani R. Preparation and characterization of nanocomposite ZnO–Ag thin film containing nano-sized Ag particles: influence of preheating, annealing temperature and silver content on characteristics. J Sol–Gel Sci Technol. 2010;54:195–202.CrossRefGoogle Scholar
  19. 19.
    Habibi MH, Askari E. Synthesis of nanocrystalline zinc manganese oxide by thermal decomposition of new dinuclear manganese(III) precursors. J Therm Anal Calorim. 2012; doi: 10.1007/s10973-012-2460-x.
  20. 20.
    Habibi MH, Shojaee E, Yamane Y, Suzuki T. Synthesis, spectroscopic studies, crystal structure and electrochemical properties of new cobalt(III) complex derived from 2-aminophenol and 4-(dimethylamino) cinnamaldehyde: nano-sized complex thin film formation via surface layer-by-layer chemical deposition method. J Inorg Organomet Polym. 2012;22:190–5.CrossRefGoogle Scholar
  21. 21.
    Habibi MH, Mikhak M. Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of Direct Blue 71. Appl Surf Sci. 2010; doi: 10.1016/j.apsusc.2012.03.042.
  22. 22.
    Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterization of ultrafine spinel ferrite obtained by precursor combustion technique. J Therm Anal Calorim. 2012;108:859–63.CrossRefGoogle Scholar
  23. 23.
    Vital A, Angermann A, Dittmann R, Graule T, Topfer J. Highly sinter-active (Mg–Cu)–Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Mater. 2007;55:1955–64.CrossRefGoogle Scholar
  24. 24.
    Hua ZH, Chen RS, Li CL, Yang SG, Lu M, Gu XB, Du YW. CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization. J Alloys Compd. 2007;427:199–203.CrossRefGoogle Scholar
  25. 25.
    Thakur S, Katyal SC, Singh M. Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mater. 2009;321:1–7.CrossRefGoogle Scholar
  26. 26.
    Maensiri S, Masingboon C, Boonchom B, Seraphin S. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater. 2007;56(9):797–800.CrossRefGoogle Scholar
  27. 27.
    Jiang J. A facile method to the Ni0.8Co0.2Fe2O4 nanocrystalline via a refluxing route in ethylene glycol. Mater Lett. 2007;61:3239–42.CrossRefGoogle Scholar
  28. 28.
    Gaur MS, Indolia AP. Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim. 2011;103:977–85.CrossRefGoogle Scholar
  29. 29.
    Rishikeshi SN, Joshi S. Cu–ZnO nanocrystallites by aqueous thermolysis method: thermal and vibrational study. J Therm Anal Calorim. 2012;109:1473–9.CrossRefGoogle Scholar
  30. 30.
    Lopez-Romero S, Leal SM. Fe2O3/ZnO composite particles prepared by a two step chemical soft method. Rev Mex Fıs. 2011;57(3):236–40.Google Scholar
  31. 31.
    Habibi MH, Kiani N. Preparation of single-phase α-Fe(III) oxide nanoparticles by thermal decomposition. Influence of the precursor on properties. J Therm Anal Calorim. 2012; doi: 10.1007/s10973-012-2571-4.
  32. 32.
    Fu R, Wang W, Han R, Chen K. Preparation and characterization of γ-Fe2O3/ZnO composite particles Mater Lett. 2008;62:4066–4068.Google Scholar
  33. 33.
    Szczygiel I, Winiarska K. Low-temperature synthesis and characterization of the Mn–Zn ferrite. J Therm Anal Calorim. 2011;104:577–83.CrossRefGoogle Scholar
  34. 34.
    Angus K, Thomas P, Guerbois J-P. Synthesis and characterisation of cobaltite and ferrite spinels using thermogravimetric analysis and X-ray crystallography. J Therm Anal Calorim. 2012;108:449–52.CrossRefGoogle Scholar
  35. 35.
    Surzhikov AP, Lysenko EN, Vasendina EA, Sokolovskii AN, Vlasov VA. Thermogravimetric investigation of the effect of annealing conditions on the soft ferrite phase homogeneity. Therm Anal Calorim. 2011;104:613–7.CrossRefGoogle Scholar
  36. 36.
    Surzhikov AP, Pritulov AM, Lysenko EN, Sokolovskii AN, Vlasov VA. Influence of solid-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc. Therm Anal Calorim. 2012;109:63–7.CrossRefGoogle Scholar
  37. 37.
    Carp O, Patron L, Pascu G, Mindru I, Stanica N. Thermal investigations of nickel–zinc ferrites formation from malate coordination compounds. Therm Anal Calorim. 2006;84:391–4.CrossRefGoogle Scholar
  38. 38.
    Waqas H, Qureshi and AH. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process. J Therm Anal Calorim. 2010;100:529-535.Google Scholar
  39. 39.
    Waqas H, Qureshi AH. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J Therm Anal Calorim. 2009;98:355–60.CrossRefGoogle Scholar
  40. 40.
    Ichiyanagi Y, Uehashi T, Yamada S, Kanazawa Y, Yamada T. Thermal fluctuation and magnetization of Ni–Zn ferrite nanoparticles by particle size. J Therm Anal Calorim. 2005;81:541–4.CrossRefGoogle Scholar
  41. 41.
    Xavier CS, Candeia RA, Bernardi MIB, Lima SJG, Longo E. Effect of the modifier ion on the properties of MgFe2O4 and ZnFe2O4 pigments. J Therm Anal Calorim. 2007;87:709–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Mohammad Hossein Habibi
    • 1
    Email author
  • Amir Hossein Habibi
    • 1
  1. 1.Nanotechnology Laboratory, Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations