Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 2, pp 859–863

Effect of composition on the thermal behavior of NiMnGa alloys

Article

Abstract

The methods to determine martensitic transformation temperature, enthalpy and entropy change, specific heat capacity change with temperature, and transformation activation energies of Ni–%29.5Mn–%21Ga, Ni–%29Mn–%21Ga, Ni–%29.5Mn–%20Ga, and Ni–%28.5Mn–%20.5Ga (atomic percentage) alloys were investigated by differential scanning calorimetry. It was observed that the transformation temperature increased with an increase in atomic nickel ratio. Meanwhile, it was detected that the change in enthalpy increases with the amount of nickel. The highest values of entropy change and the heat capacity at room temperature were observed in the alloy having the least amount of nickel in it.

Keywords

NiMnGa shape memory alloys Thermal behavior Entalpy change Entropy change Specific heat capacity 

References

  1. 1.
    Degeratu S, Rotaru P, Rizescu S, Bizdoaca NG. Thermal study of shape memory alloy (SMA) spring actuator designed insure the motion of barrier structure. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2369-4.Google Scholar
  2. 2.
    Zanotti C, Giuliani P, Bassani P, Zhang Z, Chrysanthou A. Comparison between the thermal properties of fully dense and porous NiTi SMAs. Intermetallic. 2010;18:14–21.CrossRefGoogle Scholar
  3. 3.
    Xuan HC, Wang DH, Zhang CL, Han ZD, Gu XB, Du YW. Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys. Appl Phys Lett. 2008;92:102503–5.CrossRefGoogle Scholar
  4. 4.
    Khovailo VV, Chernenko VA, Cherechukin AA, Takagi T, Abe T. An efficient control of Curie temperature T c in NiMnGa alloys. J Magn Magn Mater. 2004;272–276:2067–8.CrossRefGoogle Scholar
  5. 5.
    Jesintha Rani R, Senthur Pandi R, Seenithurai S, Vinodh Kumar S, Muthuraman M, Mahedran M. Structural thermal and magnetic characterization of Ni–Mn–Ga ferromagnetic shape memory alloys. Am J Condens Matter Phys. 2011;1–1:1–7.Google Scholar
  6. 6.
    Ma Y, Jiang C, Li Y, Xu H, Wang C, Liu X. Study of Ni50+xMn25Ga25−x (x = 2–11) as high-temperature shape memory alloys. Acta Mater. 2007;55:1533–41.CrossRefGoogle Scholar
  7. 7.
    Ingale B, Golapan R, Rajasekhar M, Ram S. Studies on ordering temperature and martensite stabilization in Ni55Mn20−xGa25+x. J Alloy Compd. 2009;475:276–80.CrossRefGoogle Scholar
  8. 8.
    Cong DY, Wang S, Wang YD, Ren Y, Zuo L, Esling C. Martensitic and magnetic transformation in Ni–Mn–Ga–Co ferromagnetic shape memory alloys. Mater Sci Eng. 2008;473:213–8.CrossRefGoogle Scholar
  9. 9.
    Gaitzsch U, Roth S, Rellinghaus B, Schultz L. Adjusting the crystal structure of NiMnGa shape memory ferromagnets. J Magn Magn Mater. 2006;305:275–7.CrossRefGoogle Scholar
  10. 10.
    Singh RK, Shamsuddin M, Gopalan R, Mathur RP, Chandrasekaran V. Magnetic and structural transformation in off-stoichiometric NiMnGa alloys. Mater Sci Eng. 2008;476:195–200.CrossRefGoogle Scholar
  11. 11.
    Borisenko ID, Koledov VV, Khalovailo VV, Shavrov VG. Martensitic and magnetic phase transition in ternary ferromagnetic alloys Ni–Mn–Ga. J Magn Magn Mater. 2006;300:486–8.CrossRefGoogle Scholar
  12. 12.
    Wedel C, Itagaki K. High temperature phase relations in the ternary Ga–Mn–Ni system. J Phase Equilib. 2001;22(3):324.CrossRefGoogle Scholar
  13. 13.
    Feng G, Jiang C, Liang T, Xu H. Magnetic and structral transition of Ni50+xMn25−x/2Ga25−x/2 (x = 2–5) alloys. J Magn Magn Mater. 2002;248:312–7.CrossRefGoogle Scholar
  14. 14.
    Khalil-Allafi J, Amin-Ahmadi B. The effect of chemical composition on enthalpy and entropy change of martensitic transformations in binary NiTi shape memory alloys. J Alloy Compd. 2009;487:363–6.CrossRefGoogle Scholar
  15. 15.
    Sofronie M, Tolea F, Kuncser V, Valeanu M. Martensitic transformation and accompanying magnetic changes in Ni–Fe–Ga–Co alloys. J Appl Phys. 2010;107:113905–8.CrossRefGoogle Scholar
  16. 16.
    Jiang C, Muhammad Y, Deng L, Wu W, Xu H. Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater. 2004;52:2779–85.CrossRefGoogle Scholar
  17. 17.
    Khovaillo VV, Oikawa K, Abe T, Takagi T. Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2+xMn1−xGa. J Appl Phys. 2003;93(10):8483–5.CrossRefGoogle Scholar
  18. 18.
    Kumar R, Sharma P, Barman PB, Sharma V, Katyal SC, Ragra VS. Thermal stability and crystalization kinetics of Se–Te–Sn alloys using differential scanning caloritmetry. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2062-z.Google Scholar
  19. 19.
    Guili G, Yujun B, Qifeng P. DSC study of martensitic transformation kinetics in Cu–Zn–Al–Mn–Ni shape memory alloy. Acta Metall Sin. 1996;9(1):56–8.Google Scholar
  20. 20.
    Cesari E, Chernenko VA, Font J, Muntasell J. AC technique apllied to C p measurements in NiMnGa alloys. Thermochim Acta. 2005;433:153–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Physics Elazig, Faculty of ScienceFirat UniversityElazigTurkey
  2. 2.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations