Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 1, pp 293–300 | Cite as

Combining zone melting and preparative chromatography to purify Phenanthrene

  • Nicolas CouvratEmail author
  • Antoine Burel
  • Séverine Tisse
  • Yohann Cartigny
  • Gérard Coquerel


The impacts of zone melting and preparative chromatography on Phenanthrene purity were established by GC and DSC experiments. On the one hand, phase diagrams investigations between Phenanthrene and its major impurities (Dibenzothiophene, Fluorene, Carbazole, and Anthracene) have revealed inadequate heterogeneous equilibria for an efficient purification by zone melting, especially for Fluorene. Nevertheless, a clear purification effect has been noticed by applying this thermal process. On the other hand, preparative chromatography has shown a propensity to separate Phenanthrene from Fluorene. This uncommon case demonstrates the advantages of combining purification techniques to reach a sufficient purity level. Moreover, this study highlights the limitations of analytical tools to quantify such high level of purity.


Zone melting Preparative chromatography Chemical purity Phenanthrene Solid–solid transition DSC analyses 



High performance liquid chromatography


Preparative HPLC


Gas chromatography


Limit of quantification


Not quantifiable


Mass spectroscopy


Differential scanning calorimetry


Low temperature


High temperature


Raw Phenanthrene


Zone melted Phenanthrene


Twice purified Phenanthrene

Supplementary material

10973_2012_2746_MOESM1_ESM.doc (292 kb)
Supplementary material 1 (DOC 292 kb)


  1. 1.
    König A, Stepanski M, Kuszlik A, Keil P, Weller C. Ultra-purification of ionic liquids by melt crystallization. Chem Eng Res Des. 2008;86:775–80.CrossRefGoogle Scholar
  2. 2.
    Coquerel G. The ‘structural purity’ of molecular solids—an elusive concept? Chem Eng Process. 2006;45:857–62.CrossRefGoogle Scholar
  3. 3.
    Scott RPW. Preparative chromatography. Chrom-Ed Book Series; 2003.Google Scholar
  4. 4.
    Ulrich J, Glade H. Melt crystallization fundamentals, equipment and applications. Aachen: Shaker Verlag; 2003.Google Scholar
  5. 5.
    Pfann WG. Techniques of zone melting and crystal growing. Solid State Phys. 1957;4:423–521.CrossRefGoogle Scholar
  6. 6.
    Pfann WG. Zone melting. U.S. patent no. 3423189; 1969.Google Scholar
  7. 7.
    Hein CC. Preparation of pure crystalline silicon. U.S. patent no. 2747971; 1956.Google Scholar
  8. 8.
    Wilcox WR, Friedenberg R, Back N. Zone melting of organic compounds. Chem Rev. 1964;64:187–220.CrossRefGoogle Scholar
  9. 9.
    Sola Cervera JL, Keil P, König A. Determination of distribution coefficients in 1-ethyl-3-methyl imidazolium chloride–methylimidazole mixtures by zone melting. Chem Eng Technol. 2010;33:821–6.CrossRefGoogle Scholar
  10. 10.
    McArdle J, Sherwood JN, Damask AC. The growth and perfection of phenanthrene single crystals: 1. Purification and single crystal growth. J Cryst Growth. 1974;22:193–200.CrossRefGoogle Scholar
  11. 11.
    Peters CA, Luthy RG. Coal tar dissolution in water-miscible solvents: experimental evaluation. Environ Sci Technol. 1993;27:2831–43.CrossRefGoogle Scholar
  12. 12.
    Kluge J, Joss L, Viereck S, Mazzoti M. Emulsion crystallization of phenanthrene by supercritical fluid extraction of emulsions. Chem Eng Sci. 2012;77:249–58.CrossRefGoogle Scholar
  13. 13.
    Couvrat N, Keil P, Sola Cervera JL, König A, Cartigny Y, Coquerel G. Purification of phenantrene by zone melting. In: BIWIC 2010 Proceedings, Cuvillier-Verlag, Göttingen, 2010. ISBN-13: 9783869554280.Google Scholar
  14. 14.
    Couvrat N, Cartigny Y, Tisse S, Petit MN, Coquerel G. Binary phase diagram between phenanthrene and its main impurity. In: XXXVII JEEP—37th Conference on Phase Equilibria, 2011. doi:
  15. 15.
    Petricek V, Cisarova I, Hummel L, Kroupa J, Brezina B. Orientational disorder in phenanthrene. Structure determination at 248, 295, 339 and 344 K. Acta Cryst. 1990;B46:830–2.Google Scholar
  16. 16.
    Mullin JW. Crystallization. 3rd ed. Oxford: Butterworth-Heinemann; 1993.Google Scholar
  17. 17.
    Brown ME. Introduction to thermal analysis, techniques and applications. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2004.CrossRefGoogle Scholar
  18. 18.
    Bradley G, Marsh JK. The system anthracene–phenanthrene. J. Chem. Soc. 1933; 650–652.Google Scholar
  19. 19.
    Brandstatter-Kuhnert M, WeiB H. Zur Mischkristallbildung in der isomorphen Gruppe: Anthracen, Phenanthren, Carbazol und Fluoren. Mh Chem. 1957;88:1007–16.Google Scholar
  20. 20.
    Kotula I, Rabczuk A. Solid-liquid equilibrium of the phenanthrene–fluorene system. J Therm Anal. 1979;15:343–6.CrossRefGoogle Scholar
  21. 21.
    Gloisten U, Epple M, Cammenga HK. Influencing the solid–solid phase transition in phenanthrene by suitable doping. Z Phys Chem. 2000;214:379–88.CrossRefGoogle Scholar
  22. 22.
    Plato C, Glasgow AR Jr. Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds. Anal Chem. 1969;41:330–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Nicolas Couvrat
    • 1
    Email author
  • Antoine Burel
    • 1
  • Séverine Tisse
    • 1
  • Yohann Cartigny
    • 1
  • Gérard Coquerel
    • 1
  1. 1.Laboratoire SMSUniversité de RouenMont Saint AignanFrance

Personalised recommendations