Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 3, pp 1303–1315 | Cite as

Identifying transition temperatures in bloodmeal-based thermoplastics using material pocket DMTA

  • J. M. BierEmail author
  • C. J. R. Verbeek
  • M. C. Lay


Bloodmeal can be used to manufacture thermoplastics, but requires water, urea, sodium sulphite, and sodium dodecyl sulphate to modify chain mobility. Transition temperatures of bloodmeal, modified bloodmeal, and processed bloodmeal-based thermoplastics were compared using material pocket dynamic mechanical thermal analysis. The glass transition temperature (T g) of bloodmeal dropped from 493 to 263 K using only water as a plasticizer but was restored when freeze dried. Modifying bloodmeal lowered T g to 193 K. This was raised by drying, but not to that of unmodified bloodmeal indicating a permanent change. Three additional transitions were identified above T g, for modified bloodmeal between 300 and 480 K. These were thought to be transitions of dehydrated bulk amorphous regions, amorphous regions between crystallites and chains segments in crystallites and were also seen at lower temperatures when replacing some water with tri-ethylene glycol (TEG). Material pockets increased resolution in processed samples. One broad T g was observed in consolidated bars, at 335 or 350 K with or without TEG. In material pockets, these resolved into three transitions, similar to those observed before processing. Changes in relative magnitudes suggested some chain rearrangement leading to more bulk amorphous regions. Differences were detected between onset of drop in storage modulus and peaks in loss modulus and tan δ in pockets or bars, but generally led to the same conclusions. For bar samples, it was helpful to compare natural and log modulus scales. Good practice would use all these techniques in parallel to correctly identify relaxation temperatures.


Relaxation Dynamic mechanical thermal analysis (DMTA) Thermoplastic protein Bioplastics Glass transition 


  1. 1.
    Verbeek CJR, van den Berg LE. Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng. 2010;295(1):10–21. doi: 10.1002/mame.200900167.CrossRefGoogle Scholar
  2. 2.
    Verbeek CJR, van den Berg LE. Development of proteinous bioplastics using bloodmeal. J Polym Environ. 2010;1:1–10. doi: 10.1007/s10924-010-0232-x.Google Scholar
  3. 3.
    Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA. 2003;100(9):5142–7. doi: 10.1073/pnas.0930122100.CrossRefGoogle Scholar
  4. 4.
    Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE. Plastics material. NZ Patent NZ551531. Waikatolink Limited, Hamilton (2009).Google Scholar
  5. 5.
    Verbeek CJR, van den Berg LE. Structural changes as a result of processing in thermoplastic bloodmeal. J Appl Polym Sci. 2012. doi: 10.1002/app.36964.
  6. 6.
    Silalai N, Roos YH. Dielectric and mechanical properties around glass transition of milk powders. Dry Technol. 2010;28(9):1044–54. doi: 10.1080/07373937.2010.505520.CrossRefGoogle Scholar
  7. 7.
    Menard KP. Dynamic mechanical analysis: a practical introduction. 2nd ed. Boca Raton, FL: CRC Press; 2008.CrossRefGoogle Scholar
  8. 8.
    Royall PG, Huang CY, Tang SWJ, Duncan J, Van-de-Velde G, Brown MB. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int J Pharm. 2005;301(1–2):181–91. doi: 10.1016/j.ijpharm.2005.05.015.CrossRefGoogle Scholar
  9. 9.
    Pinheiro A, Mano JF. Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test. 2009;28(1):89–95. doi: 10.1016/j.polymertesting.2008.11.008.CrossRefGoogle Scholar
  10. 10.
    Carpenter J, Katayama D, Liu L, Chonkaew W, Menard K. Measurement of t-g in lyophilized protein and protein excipient mixtures by dynamic mechanical analysis. J Therm Anal Calorim. 2009;95(3):881–4. doi: 10.1007/s10973-007-8986-7.CrossRefGoogle Scholar
  11. 11.
    Raschip IE, Yakimets I, Martin CP, Paes SS, Vasile C, Mitchell JR. Effect of water content on thermal and dynamic mechanical properties of xanthan powder: a comparison between standard and novel techniques. Powder Technol. 2008;182(3):436–43.CrossRefGoogle Scholar
  12. 12.
    Silalai N, Roos YH. Coupling of dielectric and mechanical relaxations with glass transition and stickiness of milk solids. J Food Eng. 2011;104(3):445–54.CrossRefGoogle Scholar
  13. 13.
    Gearing J, Malik KP, Matejtschuk P. Use of dynamic mechanical analysis (DMA) to determine critical transition temperatures in frozen biomaterials intended for lyophilization. Cryobiology. 2010;61(1):27–32.CrossRefGoogle Scholar
  14. 14.
    Gârea S-A, Iovu H, Nicolescu A, Deleanu C. Thermal polymerization of benzoxazine monomers followed by GPC, FTIR and DETA. Polym Test. 2007;26(2):162–71.CrossRefGoogle Scholar
  15. 15.
    Gupta P, Bansal AK. Devitrification of amorphous celecoxib. AAPS PharmSciTech. 2005;6(2):E223–30. doi: 10.1208/pt060232.CrossRefGoogle Scholar
  16. 16.
    Mano JF. Thermal behaviour and glass transition dynamics of inclusion complexes of alpha-cyclodextrin with poly(d,l-lactic acid). Macromol Rapid Commun. 2008;29(15):1341–5. doi: 10.1002/marc.200800180.CrossRefGoogle Scholar
  17. 17.
    Paes SS, Sun SM, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, et al. The glass transition and crystallization of ball milled cellulose. Cellulose. 2010;17(4):693–709. doi: 10.1007/s10570-010-9425-7.CrossRefGoogle Scholar
  18. 18.
    Williams MA, Jones DS, Andrews GP. A study of drug-polymer miscibility using dynamic mechanical thermal analysis. J Pharm Pharmacol. 2010;62(10):1400.Google Scholar
  19. 19.
    Silalai N, Roos YH. Mechanical relaxation times as indicators of stickiness in skim milk-maltodextrin solids systems. J Food Eng. 2011;106(4):306–17.CrossRefGoogle Scholar
  20. 20.
    Kemal E, Adesanya KO, Deb S. Phosphate based 2-hydroxyethyl methacrylate hydrogels for biomedical applications. J Mater Chem. 2011;21(7):2237–45. doi: 10.1039/c0jm02984j.CrossRefGoogle Scholar
  21. 21.
    ASTM International. D638-03 standard test method for tensile properties of plastics. PA 19428-2959. ASTM International, West Conshohocken, PA; 2004.Google Scholar
  22. 22.
    Guo JX, Harn N, Robbins A, Dougherty R, Middaugh CR. Stability of helix-rich proteins at high concentrations. Biochemistry. 2006;45(28):8686–96. doi: 10.1021/bi060525p.CrossRefGoogle Scholar
  23. 23.
    Michnik A. Thermal stability of bovine serum albumin DSC study. J Therm Anal Calorim. 2003;71(2):509–19. doi: 10.1023/a:1022851809481.CrossRefGoogle Scholar
  24. 24.
    Heijboer J, Secondary loss peaks in glassy amorphous polymers. In: Boyer RF, Meier DJ. Midland macromolecular institute. In Dow Chemical Company, editors. Molecular basis of transitions and relaxations: papers. Midland macromolecular monographs. London: Gordon and Breach Science Publishers; 1978. p. xii, 429.Google Scholar
  25. 25.
    Rouilly A, Orliac O, Silvestre F, Rigal L. DSC study on the thermal properties of sunflower proteins according to their water content. Polymer. 2001;42(26):10111–7.CrossRefGoogle Scholar
  26. 26.
    Zhang J, Mungara P, Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer. 2001;42(6):2569–78.CrossRefGoogle Scholar
  27. 27.
    Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A. Rheology and processing of gluten based bioplastics. Biochem Eng J. 2005;26(2–3):131–8. doi: 10.1016/j.bej.2005.04.010.CrossRefGoogle Scholar
  28. 28.
    Panagopoulou A, Kyritsis A, Serra RSI, Ribelles JLG, Shinyashiki N, Pissis P. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques. BBA-Proteins Proteomics. 2011;1814(12):1984–96. doi: 10.1016/j.bbapap.2011.07.014.CrossRefGoogle Scholar
  29. 29.
    Mo X, Sun X. Effects of storage time on properties of soybean protein-based plastics. J Polym Environ. 2003;11(1):15–22.CrossRefGoogle Scholar
  30. 30.
    Mo XQ, Sun XZ. Thermal and mechanical properties of plastics molded from urea-modified soy protein isolates. J Am Oil Chem Soc. 2001;78(8):867–72.CrossRefGoogle Scholar
  31. 31.
    Oliviero M, Maio ED, Iannace S. Effect of molecular structure on film blowing ability of thermoplastic zein. J Appl Polym Sci. 2010;115(1):277–87.CrossRefGoogle Scholar
  32. 32.
    Menczel JD, Prime RB. Thermal analysis of polymers: fundamentals and applications. Hoboken: Wiley; 2009.CrossRefGoogle Scholar
  33. 33.
    van Krevelen DW, Nijenhuis Kt. Properties of polymers :their correlation with chemical structure : their numerical estimation and prediction from additive group contributions, 4th edn. Amsterdam: Elsevier; 2009.Google Scholar
  34. 34.
    Dow Chemical Company. Triethylene glycol. 2007. Accessed 8 March 2012.
  35. 35.
    Verbeek C, Koppel N. Moisture sorption and plasticization of bloodmeal-based thermoplastics. J Mater Sci. 2011;47:1187–95. doi: 10.1007/s10853-011-5770-7.CrossRefGoogle Scholar
  36. 36.
    Boyer RF, Turley SG. Molecular Motion in polystyrene. In: Boyer RF, Meier DJ, Midland Macromolecular Institute, Dow Chemical Company, editors. Molecular basis of transitions and relaxations: papers. Midland macromolecular monographs, vol. 4. London: Gordon and Breach Science Publishers; 1978. p. xii, 429.Google Scholar
  37. 37.
    ASTM International. E1640-04 standard test method for assignment of the glass transition temperature by dynamic mechanical analysis. West Conshohocken, PA: ASTM International; 2004.Google Scholar
  38. 38.
    Boyd RH. Relaxation processes in crystalline polymers: experimental behavior—a review. Polymer. 1985;26(3):323–47. doi: 10.1016/0032-3861(85)90192-2.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.School of Engineering University of WaikatoHamiltonNew Zealand

Personalised recommendations