Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 535–542 | Cite as

TG–DSC–FTIR–MS study of gaseous compounds evolved during thermal decomposition of styrene-butadiene rubber

  • Antonyraj Arockiasamy
  • Hossein Toghiani
  • David Oglesby
  • M. F. Horstemeyer
  • J. L. Bouvard
  • Roger L. King


The thermal decomposition behavior of styrene-butadiene rubber was studied using a system equipped with thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, and mass spectroscopy. Two different experiments were conducted. From these experiments, thermogravimetric analysis results indicated a mass loss of 58 % in the temperature range of ~290–480 °C and a mass loss of 39 % in the temperature range beyond 600 °C. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy confirmed the presence of oxides, even at 1,000 °C, accounting for the Zn, Mg, Al, Si, and Ca in the original sample.


Thermal analytical techniques Styrene-butadiene rubber Compositional analysis 



This material is based upon work supported by the U.S. Army TACOM Life Cycle Command under Contract No. W56HZV-08-C-0236, through a subcontract with Mississippi State University, and was performed for the Simulation Based Reliability and Safety (SimBRS) research program. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Army TACOM Life Cycle Command. The authors would also like to acknowledge the support of the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University (MSU).


  1. 1.
    Brown HR, Bouvard JL, Oglesby D, Marin E, Francis D, Antonyraj A, Toghiani H, Wang PT, Horstemeyer MF. Mechanical behavior and fatigue studies of rubber components used in tracked vehicles.
  2. 2.
    Rybinski P, Janowsk G, Kucharska J, Jastrzabek A. Influence of surface modification on thermal stability and flammability of cross-linked rubbers. J Therm Anal Calorim. 2010;100:1037–44.CrossRefGoogle Scholar
  3. 3.
    Mati M, Mitra S, Bhowmiek AK. Effect of nanoclays on high and low temperature degradation of fluoroelastomers. Polym Degrad Stab. 2008;93:188–200.CrossRefGoogle Scholar
  4. 4.
    Janowska T, Rybinski O, Jantas R. Effect of the modification of silica on thermal properties and flammability of cross-linked butadiene-acrylonitrile rubbers. J Therm Anal Calorim. 2007;87:511–7.CrossRefGoogle Scholar
  5. 5.
    Radell EA, Strutz HC. Identification of acrylate and methacrylate polymers by gas chromatography. Anal Chem. 1959;31:1890–1.CrossRefGoogle Scholar
  6. 6.
    Lehrle RS, Robb JC. Direct examination of the degradation of high polymers by gas chromatography. Nature. 1959;183:1671.CrossRefGoogle Scholar
  7. 7.
    Hackathorn MJ, Brock MJ. Determination of head–head and tail–tail structures in polyisoprenes. Rubber Chem Technol. 1972;45:1295–302.CrossRefGoogle Scholar
  8. 8.
    Lattimer RP, Harris RE, Rhee CK, Schulten HR. Identification of organic compounds in uncured rubber compounds using mass spectrometry. Rubber Chem Technol. 1988;61:639–57.CrossRefGoogle Scholar
  9. 9.
    Schulten HR, Plage B, Lattimer RP. Pyrolysis-field ionization mass spectrometry of rubber vulcanizates. Rubber Chem Technol. 1989;62:698–708.CrossRefGoogle Scholar
  10. 10.
    Bach J, Braun D, Mueller I, Wendorff JH. Aging of rubber modified thermoplastics and elastomers. Angew Makromol Chem. 1985;137:21–34.CrossRefGoogle Scholar
  11. 11.
    Matheson MJ, Wampler TP, Simonsick WJ. The effect of carbon black filling on the pyrolysis behavior of natural and synthetic rubber. Rubber World. 1996;213:14–6.Google Scholar
  12. 12.
    Ghebremeskel GN, Sekinger JK, Hoffpauir JL, Hendrix C. A study of the thermal degradation products of styrene-butadiene type rubber by pyrolysis/GC/MS. Rubber Chem Technol. 1996;69:874–84.CrossRefGoogle Scholar
  13. 13.
    Chien JCW, Kiang JKY. Polymer reactions. X. Thermal pyrolysis of poly(isoprene). Eur Polymer J. 1979;15:1059–65.CrossRefGoogle Scholar
  14. 14.
    Wang J, Pan Y, Fang Y, Wang Y. Determination of the rubber composition in styrene–butadiene latex by pyrolysis gas chromatography. Huaxue Shijie. 1985;26:177–9.Google Scholar
  15. 15.
    Lee YS, Lee W, Cho S, Kim H. Quantitative analysis of unknown compositions in ternary polymer blends: a model study on NR/SBR/BR system. J Anal Appl Pyro. 2007;78:85–94.CrossRefGoogle Scholar
  16. 16.
    Choudhury NR, De P, Dutta NK. Thermal analysis of rubbers and rubbery materials. U.K.: Smithers Rapra Technology Ltd.; 2010. p. 546.Google Scholar
  17. 17.
    Antonyraj A, German RM, Wang PT, Horstemeyer MF. DSC analysis of Al6061 aluminum alloy powder by rapid solidification: effect of additives. J Therm Anal Calorim. 2010;100:361–6.CrossRefGoogle Scholar
  18. 18.
    Mullens J. EGA—evolved gas analysis. In: Brown ME, editor. Handbook of thermal analysis and calorimetry, vol 1, Chapter 12. Amsterdam: Elsevier Science; 1998. p. 1509–46.Google Scholar
  19. 19.
    Macaione DP, Sacher RE, Singler, RE. Thermogravimetric characterization of elastomers and carbon-filled rubber composites for military applications. ASTM special technical publication. Compos Anal Thermograv. 1988;99759–69.Google Scholar
  20. 20.
    ASTM D297-93 e2, Standard test methods for rubber products-chemical analysis; 2002.Google Scholar
  21. 21.
    ASTM E1131-98, Standard test method for compositional analysis by thermogravimetry; 2003.Google Scholar
  22. 22.
    ASTM D6370-99, Standard test method for rubber-compositional analysis by thermogravimetry; 2003.Google Scholar
  23. 23.
    ASTM D3677-00, Standard test methods for rubber-identification by infrared spectrophotometry; 2004.Google Scholar
  24. 24.
    ASTM E1641-07, Standard test method for decomposition kinetics by thermogravimetry; 2007.Google Scholar
  25. 25.
    ASTM D5805-00, Standard test method for rubber from synthetic sources-carbon black in masterbatches; 2009.Google Scholar
  26. 26.
    Sawyer L, Grubb DT, Meyers GF. Polymer microscopy, XIV. 3rd ed. New York: Springer: 2008. p. 540.Google Scholar
  27. 27.
    Thomas EL. Structure of crystalline polymers, Hall IH, editor. London: Elsevier-Applied Science; 1984. p. 79.Google Scholar
  28. 28.
    Hobbs SY. Plastic polymer science and technology. Bayal MD, editor. New York: Wiley-Interscience; 1982. p. 239.Google Scholar
  29. 29.
    Grubb DT. Developments crystalline polymers, Bassett DC, editor. London: Applied Science; 1982, p. 1.Google Scholar
  30. 30.
    Hayat MA. Positive staining for electron microscopy. New York: Van Nostrand Reinhold; 1975.Google Scholar
  31. 31.
    Hayat M. Principles and techniques of electron microscopy-biological applications. 3rd ed. Boca Raton: CRC Press; 1989.Google Scholar
  32. 32.
    Lewis PR, Knight DP, editors. Staining methods for sectioned material. Amsterdam: North Holland-American Elsevier; 1977.Google Scholar
  33. 33.
    Berrisford DJ, Bolm C, Sharpless KB. Ligand-accelerated catalysis. Angewandte Chemie International Edition. 1995;34:1059–70.Google Scholar
  34. 34.
    Sacher RE, Macaione DP, Singler RE, Thermal analysis and characterization of elastomers and carbon black filler rubber composites for army applications” Army materials and mechanics research center wateron, Massachutts, Final report # AMMRC TR 1985;85–4,
  35. 35.
    Eilhannkwon K, Castaldi MJ. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere. Environ Sci Technol. 2009;43:5996–6002.CrossRefGoogle Scholar
  36. 36.
    Williams PT, Besler B, Taylor DT. The batch pyrolysis of tire waste–fuel properties of the derived pyrolytic oil and overall plant economics. Proc Instn Mech Eng. 1993;207:55–63.Google Scholar
  37. 37.
    Kaminsky W, Tossler H. Olefins from wastes. Chem Tech. 1992;22:108–13.Google Scholar
  38. 38.
    Wey MY, Liou BH, Wu SY, Zhang CH. The autothermal pyrolysis of waste tires. J Air Waste Manage Assoc. 1995;45:855–63.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Antonyraj Arockiasamy
    • 3
    • 1
  • Hossein Toghiani
    • 2
  • David Oglesby
    • 1
  • M. F. Horstemeyer
    • 1
  • J. L. Bouvard
    • 1
  • Roger L. King
    • 1
  1. 1.Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleUSA
  2. 2.Dave C. Swalm School of Chemical EngineeringMississippi State UniversityMississippi StateUSA
  3. 3.Environmental Health and SafetyThe University of Mississippi Medical CenterJacksonUSA

Personalised recommendations