Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 2, pp 1073–1082 | Cite as

Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles

Part 84
  • Supriya Singh
  • Pratibha Srivastava
  • Inder Pal Singh Kapoor
  • Gurdip Singh


In present study, a series of rare earth metal oxide (CeO2, Pr2O3, and Nd2O3) nanoparticles have been prepared by sol–gel route using Ce(NO3)3·6H2O, Pr(NO3)3·6H2O and Nd(NO3)3·6H2O, and citric acid as precursor materials. Powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy are employed to characterize the size and morphology of the nano oxide particles. The particles are spherical in shape and the average particle size is of the order of 11–30 nm. Their catalytic activity was measured on the thermal decomposition of ammonium perchlorate and composite solid propellants (CSPs) by thermogravimetry (TG), TG coupled with differential thermal analysis (TG–DTA), and ignition delay measurements. The ignition delays and activation energies are found to decrease when rare earth metal oxide nanoparticles were incorporated in the system. Addition of metal oxide nanoparticles to AP led to shifting of the high temperature decomposition peak toward lower temperature and the burning rate of CSPs was also found to enhance. However, E a activation energy for decomposition was also found to decrease with each catalyst.


Rare earth metal oxide nanoparticles (REMONs) Sol–gel route Catalytic activity Ammonium perchlorate Kinetics 



The authors are grateful to Head, Chemistry Department of DDU Gorakhpur University for laboratory facility. IIT Roorkee for TG–DTA, STIC Cochin for XRD and Punjab University for TEM images. Thanks are also due to financial assistance by University Grants Commission for providing Emeritus Fellow to G. Singh and Department of Science and Technology, New Delhi for INSPIRE fellowship to Supriya Singh.


  1. 1.
    Huang PX, Wu F, Zhu BL, Li GR, Wang YL, Gao XP, Zhu HY, Yan TY. Physiochemical and electrical properties of praseodymium oxides. J Phys Chem B. 2006;110:1614–20.CrossRefGoogle Scholar
  2. 2.
    Panda BA, Glaspell G, El-Shall SM. Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J Phys Chem C. 2007. doi: 10.1021/jp0670283.
  3. 3.
    Gojova A, Lee JT, Jung HS, Guo B. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhalation Toxicol. 2009;21(51):123–30.CrossRefGoogle Scholar
  4. 4.
    Luca V, Djajanti S, Howr RF. Structure and electronic properties of sol-gel titanium oxides studied by absorption. J Phys Chem B. 1998;102:10650–7.CrossRefGoogle Scholar
  5. 5.
    Ying JY, Benziger JB. Synthesis and characteristic of non stoichiometric nanocrystalline cerium oxide based catalyst. Chem Eng J. 1996;64:225–37.Google Scholar
  6. 6.
    Singh G, Felix SP. Studies on energetic compounds part 36: evaluation of transition metal salts of NTO as burning rate modifiers for HTPB-AN composite solid propellants. Combust Flame. 2003;135:145–50.CrossRefGoogle Scholar
  7. 7.
    Freeman ES, Gordon S. The application of the absolute rate theory of the ignition of propagatively reacting systems: thermal ignition of the system, lithium nitrate-magnesium, sodium nitrate-magnesium. J Phys Chem. 1956;60:867–71.CrossRefGoogle Scholar
  8. 8.
    Jain SR, Oomen C. Thermal ignition studies on metalized fuel oxidizer systems. J Therm Anal Calorim. 1989;35:1119–28.CrossRefGoogle Scholar
  9. 9.
    Jain SR, Murthy KN, Thanoo BC. Ignition delay studies on hypergolic fuel grains. Def Sci J. 1988;38:273–86.Google Scholar
  10. 10.
    Carnes CL, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxides catalysts. J Mol Catal A. 2003;194:227–36.CrossRefGoogle Scholar
  11. 11.
    Jacobs PWM, Whitehead HM. Decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;69:551–90.CrossRefGoogle Scholar
  12. 12.
    Solymosi F, Krix E. Catalysis of solid phase reaction effect of doping of cupric oxide catalyst on thermal decomposition and explosion of ammonium perchlorate. J Catal. 1962;1:468–80.CrossRefGoogle Scholar
  13. 13.
    Freeman ES, Anderson DA, Campisi JJ. The Effect of X-ray and γ-ray irradiation on the thermal decomposition of ammonium perchlorate in the solid state. J Phys Chem. 1960;64:1727–32.CrossRefGoogle Scholar
  14. 14.
    Galway AK, Mohamed MA, Cromie DS. Role of silver compounds in promoting the thermal decomposition of ammonium perchlorate. React Solids. 1986;1:235–51.CrossRefGoogle Scholar
  15. 15.
    Galway AK, Herley PJ, Mohamed MA. Role of additives in the thermal decomposition of ammonium perchlorate and evidence supporting the identification of nitryl perchlorate as the essential reaction intermediate. Thermochim Acta. 1988;132:205–15.CrossRefGoogle Scholar
  16. 16.
    Rastogi RP, Singh G, Dubey BL, Shukla CS. Solid state chemistry of copper chromite used as a catalyst for the burning of ammonium perchlorate/polystyrene propellants. J Catal. 1980;65:25–30.CrossRefGoogle Scholar
  17. 17.
    Said AA. The role of copper chromite oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal. 1991;37:959–67.CrossRefGoogle Scholar
  18. 18.
    Singh G, Kapoor IPS, Dubey S, Siril PF. Preparation, characterization and catalytic activity of transition metal oxide nanocrystals. J Sci Conf Proc. 2008;1:7–14.Google Scholar
  19. 19.
    Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalyst on thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2009;34:351–6.CrossRefGoogle Scholar
  20. 20.
    Singh G, Kapoor IPS, Dubey R, Srivastava P. Synthesis, characterization and catalytic activity of CdO nanocrystals. Mater Sci Eng B. 2011;176:121–6.CrossRefGoogle Scholar
  21. 21.
    Kapoor IPS, Kumar D, Singh G, Siril PF, Tripathi AM. Preparation, characterization and catalytic activity of nanosized NiO and ZnO. Propellants Explos Pyrotech. 2011;36:1–5.CrossRefGoogle Scholar
  22. 22.
    Survase DV, Sarwade DB, Kurian EM. Effect of La2O3, Pr2O3 and Nd2O3 on the thermal decomposition of ammonium perchlorate. J Energy Mater. 2001;19:023–40.CrossRefGoogle Scholar
  23. 23.
    Zhang END, Chen MA, Wang YM, Gong YJ, Zhang BX, Li ZS, Han QG, Ying LA, Tong WZ. Solvothermal preparation of CeO2 nanocubes and their catalytic properties. Funct Mater Lett. 2011;4:97–100.CrossRefGoogle Scholar
  24. 24.
    Survase DV, Gupta M, Asthana SN. The effect of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants. Prog Cryst Growth Charact Mater. 2002;45:161–5.CrossRefGoogle Scholar
  25. 25.
    Yang W, Qi Y, Ma Y, Li Xion, Guo X, Gao J, Chen M. Synthesis of Nd2O3 nanoparticles by sol-gel autocombustion and their catalytic esterification activity. Mater Chem Phys. 2004;84:52–7.CrossRefGoogle Scholar
  26. 26.
    Banerjee S, Kumar P, Sujatha Devi P. Preparation of nanoparticles of oxides by citrate-nitrate process. Effect of metal ions on the thermal decomposition characteristics. J Therm Anal Calorim. 2011;104:859–67.CrossRefGoogle Scholar
  27. 27.
    Birks LS, Friedman H. Particle size determination from X-ray line broadening. J Appl Phys. 1946;17:687–92.CrossRefGoogle Scholar
  28. 28.
    Krishna S, Swami RD. Effect of catalyst mixing procedure on subatmospheric combustion characteristic of composite propellants. J Propuls Power. 1997;13(2):207–12.CrossRefGoogle Scholar
  29. 29.
    Singh G, Felix SP. Studies of energetic compounds, part 29: effect of NTO and its salt on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AP. Combust Flame. 2003;132:422–32.CrossRefGoogle Scholar
  30. 30.
    Singh G, Singh RR. Indigenously fabricated apparatus for thermogravimetric analysis. Res Ind. 1978;23:92–3.Google Scholar
  31. 31.
    Brown ME, Dollimore D, Galway AK. Reactions in the solid state comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1960. p. 1–340.Google Scholar
  32. 32.
    Vyazokin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  33. 33.
    Vyazokin S, Wight CA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater. 1999;11:3386–93.CrossRefGoogle Scholar
  34. 34.
    Lang AJ, Vyazokin S. Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust Flame. 2006;145:779–90.CrossRefGoogle Scholar
  35. 35.
    Vyazokin S, Wight CA. Model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340:53–68.CrossRefGoogle Scholar
  36. 36.
    Semenov N. Chemical kinetics and chain reactions. Oxford: Clarendon Press; 1935. p. 18.Google Scholar
  37. 37.
    Singh G, Kapoor IPS. Kinetics of thermolysis of ring substituted arylammonium nitrates. Combust Flame. 1993;92:283–91.CrossRefGoogle Scholar
  38. 38.
    Singh G, Kapoor IPS. Kinetics of thermolysis of ring substituted arylammonium perchlorates. J Phys Chem. 1992;96:1215–20.CrossRefGoogle Scholar
  39. 39.
    Singh G, Kapoor IPS, Kumar D, Singh UP, Goel N. Preparation X-ray crystallography and thermal decomposition of some transition metal perchlorate complexes with perchlorate and 2,2′-bipyridyl ligands. Inorganica Chim Acta. 2008;362:4091–8.CrossRefGoogle Scholar
  40. 40.
    Singh G, Baranwal BP, Kapoor IPS, Kumar D, Frohlich R. Preparation X-Ray crystallography and thermal decomposition of some transition metal perchlorate complex with hexamethylene tetraamine. J Phys Chem A. 2007;111:12972–6.CrossRefGoogle Scholar
  41. 41.
    Rastogi RP, Singh G, Singh RR. Mixture of oxides of copper and chromium as potential burning rate catalysts for composite solid propellants. Combust Flame. 1978;33:305–10.CrossRefGoogle Scholar
  42. 42.
    Vyazovkin S, Burnham KA, Criado MJ, Maqueda P, Popescu C. Sbirrazzuoli, ICTAC kinetics committee recommendation for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  43. 43.
    Bircumshaw LL, Newman BH. Mechanism of decomposition of ammonium perchlorate. Proc R Soc A. 1954;227:115–32.CrossRefGoogle Scholar
  44. 44.
    Jacobs PWM, Pearson GS. Mechanism of decomposition of ammonium perchlorate. Combust Flame. 1969;13:419–30.CrossRefGoogle Scholar
  45. 45.
    Singh G, Kapoor IPS, Pandey DK. Hexammine metal perchlorates as energetic burning rate modifiers. J Energetic Mater. 2002;20:223–44.CrossRefGoogle Scholar
  46. 46.
    Zinn J, Roger RN. Thermal ignition of explosives. J Phys Chem. 1962;66:2646–50.CrossRefGoogle Scholar
  47. 47.
    Roser WA, Inami SH, Wise H. Thermal decomposition of ammonium perchlorate. Combust Flame. 1968;12:427–35.CrossRefGoogle Scholar
  48. 48.
    Girdhar HL, Arora AJ. Ignition of composite solid propellants by the hot plate technique. Combust Flame. 1978;31:245–50.CrossRefGoogle Scholar
  49. 49.
    Rastogi RP, Singh G, Singh RR. Burning rate catalyst for composite solid propellants. Combust Flame. 1977;30:117–24.CrossRefGoogle Scholar
  50. 50.
    Jacobs PWM, Russel Jones A. The thermal decomposition and ignition of mixture of ammonium perchlorate +copper chromite. Inst Symp Combust. 1967;11:457–62.CrossRefGoogle Scholar
  51. 51.
    Dauerman L. Catalyzed thermal decomposition of ammonium perchlorate. AIAA J. 1967;5(1):192.CrossRefGoogle Scholar
  52. 52.
    Davis JV, Jacobs PWM, Russel Jones A. Thermal decomposition of ammonium perchlorate. Trans Faraday Soc. 1967;63:1737–48.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Supriya Singh
    • 1
  • Pratibha Srivastava
    • 1
  • Inder Pal Singh Kapoor
    • 1
  • Gurdip Singh
    • 1
  1. 1.Department of ChemistryD.D.U. Gorakhpur UniversityGorakhpurIndia

Personalised recommendations