Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 111, Issue 1, pp 627–631 | Cite as

Thermal study of l-alanine, l-threonine, and taurine crystals related to hydrogen bonding

  • R. J. C. LimaEmail author
  • E. C. Santos-Junior
  • A. J. D. Moreno
  • P. F. Façanha-Filho
  • P. T. C. Freire
  • M. I. Yoshida
Article

Abstract

In this study l-alanine, l-threonine, and taurine crystals were characterized through dilatometric technique and thermogravimetric and differential thermal analysis. The dilatometric analysis shows that the thermal expansion of the crystals is correlated with the strengths of local hydrogen bonding in the amino acid structures at room temperature. Thermogravimetric analysis and differential thermal analysis of the l-alanine, taurine, and l-threonine crystals have been performed at high temperatures. No clear correlation between the hydrogen bonding strengths and endothermic peak positions was observed.

Keywords

l-Alanine l-Threonine Taurine Thermal analysis Dilatometry 

Notes

Acknowledgements

Authors acknowledge financial support from CNPq, CAPES, and FAPEMA.

References

  1. 1.
    Jeffery GA. An introduction to hydrogen bonding. New York: Oxford University Press; 1997.Google Scholar
  2. 2.
    Bisker-Leib V, Doherty MF. Modeling the crystal shape of polar organic materials:  prediction of urea crystals grown from polar and nonpolar solvents. Cryst Growth Des. 2001;1:455–61.CrossRefGoogle Scholar
  3. 3.
    Bisker-Leib V, Doherty MF. Modeling crystal shape of polar organic materials: applications to amino acids. Cryst Growth Des. 2003;3:221–37.CrossRefGoogle Scholar
  4. 4.
    Freire PTC, Melo FEA, Filho JM, Lima RJC, Teixeira AMR. The behavior of NH3 torsional vibration of l-alanine, l-threonine and taurine crystals under high pressure: a Raman spectroscopic study. Vibr Spectrosc. 2007;45:99–102.CrossRefGoogle Scholar
  5. 5.
    Speyer RF. Thermal analysis of materials. New York: Marcel Dekker Inc.; 1994.Google Scholar
  6. 6.
    Shchepkin DN. Anharmonic effects in the Spectra of complexes with a hydrogen bond. Leningrad: Publ. of Leningrad University; 1987.Google Scholar
  7. 7.
    Shoemaker DP, Donohue J, Shoemaker V, Corey RB. The crystal structure of Ls-Threonine. J Am Chem Soc. 1950;72:2328–49.CrossRefGoogle Scholar
  8. 8.
    Lehmann MS, Koetzle TF, Hamilton WC. Precision neutron diffraction structure determination of protein and nucleic acid components. I. the crystal and molecular structure of the amino acid l-alanine. J Am Chem Soc. 1972;94:2657–60.CrossRefGoogle Scholar
  9. 9.
    Okaya Y. Refinement of the crystal structure of taurine, 2-aminoethylsulfonic acid. An example of computer-controlled experimentation. Acta Crystallogr. 1966;21:726–35.CrossRefGoogle Scholar
  10. 10.
    Forss S. A Raman spectroscopic temperature study of NH3 + torsional motion as related to hydrogen bonding in the l-alanine crystal. J Raman Spectrosc. 1982;12:266–73.CrossRefGoogle Scholar
  11. 11.
    Goodwin AL, Calleja M, Conterio MJ, Dove MT, Evans JSO, Keen DA, Peters L, Tucker MG. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science. 2008;319:794–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • R. J. C. Lima
    • 1
    Email author
  • E. C. Santos-Junior
    • 1
  • A. J. D. Moreno
    • 1
  • P. F. Façanha-Filho
    • 1
  • P. T. C. Freire
    • 2
  • M. I. Yoshida
    • 3
  1. 1.Centro de Ciências Sociais, Saúde e TecnologiaUniversidade Federal do MaranhãoImperatrizBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations