Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal behaviour of some new complexes with decaaza bismacrocyclic ligand as potential antimicrobial species

  • 120 Accesses

  • 4 Citations


Novel complexes of type M2L(CH3COO)4·nH2O (M:Ni, n = 4; M:Cu, n = 2 and M:Zn, n = 0; L: ligand resulted in 1,2-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde template condensation) were synthesised and characterised. The features of complexes have been assigned from microanalytical, IR, UV–Vis, 1H NMR, EPR as well as magnetic data at room temperature. Processes as water elimination as well as oxidative degradation of both organic components (bismacrocycle and acetate) were observed. The final product of decomposition was metal (II) oxide as powder X-ray diffraction indicates.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Kaden TA. Dinuclear metal complexes of bis-macrocycles. Coord Chem Rev. 1999;190–192:371–89.

  2. 2.

    Chartres JD, Lindoy LF, Meehan GV. Transition and post-transition metal systems incorporating linked synthetic macrocycles as structural elements. Coord Chem Rev. 2001;216–217:249–86.

  3. 3.

    Collin JP, Jouaiti A, Sauvage JP. Electrocatalytic properties of (tetraazacyclotetradecane)nickel(2+) and Ni2(biscyclam)4+ with respect to carbon dioxide and water reduction. Inorg Chem. 1988;27:1986–90.

  4. 4.

    Mochizuki K, Manaka S, Takeda I, Kondo T. Synthesis and Structure of [6,6′-bi(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II) Triflate and its catalytic activity for photochemical CO2 reduction. Inorg Chem. 1996;35:5132–6.

  5. 5.

    de Alwis C, Crayston JA, Cromie T, Eisenblätter T, Hay RW, Lampeka YaD, Tsymbal LV. Cyclic voltammetry study of the electrocatalysis of carbon dioxide reduction by bis(polyazamacrocyclic) nickel complexes. Electrochim Acta. 2000;45:2061–74.

  6. 6.

    Salavati-Niasari M, Bazarganipour M. Bis(macrocyclic) copper(II) complexes containing aromatic nitrogen–nitrogen linkers produced by in situ one pot template condensation reaction (IOPTCR): synthesis, characterization and catalytic oxidation of tetrahydrofuran. Inorg Chem Commun. 2006;9:332–6.

  7. 7.

    Salavati-Niasari M, Amiri A. Binuclear copper(II) complexes of new bis(macrocyclic) 16-membered pentaaza subunits are linked together by bridging nitrogen of amine: Synthesis, characterization and catalytic activity. J Mol Catal A Chem. 2005;235:114–21.

  8. 8.

    Salavati-Niasari M. 16-membered pentaaza bis(macrocyclic) nickel(II) complexes containing aromatic nitrogen–nitrogen linkers, {[Ni([16]aneN5)]2R}(ClO4)4: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. J Mol Catal A Chem. 2007;272:207–12.

  9. 9.

    Mochizuki K, Sugita T, Yamada F, Mochizuki N, Hayano K, Ohgami Y. New bis(macrocyclic) dinickel(II) complexes obtained by oxidation of bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,7-dien-6-yl)dinickel(II) perchlorate. Inorg Chim Acta. 2009;362:1204–8.

  10. 10.

    Hunter TM, McNae IW, Simpson DP, Smith AM, Moggach S, White F, Walkinshaw MD, Parsons S, Sadler PJ. Configurations of Nickel–cyclam antiviral complexes and protein recognition. Chem Eur J. 2007;13:40–50.

  11. 11.

    Valks GC, McRobbie G, Lewis EA, Hubin TJ, Hunter TM, Sadler PJ, Pannecouque C, De Clercq E, Archibald SJ. Configurationally restricted bismacrocyclic CXCR4 receptor antagonists. J Med Chem. 2006;49:6162–5.

  12. 12.

    McRobbie G, Valks GC, Empson CJ, Khan A, Silversides JD, Pannecouque C, De Clercq E, Fiddy SG, Bridgeman AJ, Young NA, Archibald SJ. Probing key coordination interactions: configurationally restricted metal activated CXCR4 antagonists. Dalton Trans. 2007;5008–18.

  13. 13.

    Khan A, Nicholson G, Greenman J, Madden L, McRobbie G, Pannecouque C, De Clercq E, Ullom R, Maples DL, Maples RD, Silversides JD, Hubin TJ, Archibald SJ. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J Am Chem Soc. 2009;131:3416–7.

  14. 14.

    Lindoy LF. The Chemistry of macrocyclic ligand complexes. Cambridge: Cambridge University Press; 1989.

  15. 15.

    Kang S-G, Ryu K, Jung S-K, Kim C-S. Template synthesis and characterization of copper(II) complexes of a polyaza non-macrocyclic or a bis(macrocyclic) ligand. Bull Korean Chem Soc. 1996;17:331–4.

  16. 16.

    Bernhardt PV, Kim JY, Kim Y, Lee YH, Chow S. Macrocycles and medicine—facile synthesis of a bis(macrocycle) with pendent functionality. C R Chim. 2005;8:211–4.

  17. 17.

    Singh AK, Panwar A, Singh R, Baniwal S. New bis-macrocyclic complexes with transition metal ions. Trans Met Chem. 2003;28:160–2.

  18. 18.

    Chandra S, Jain D, Ratnam B. Synthesis and spectroscopic characterization of copper (II) metal complexes of a 16 membered pentaaza (N5) bis(macrocyclic) complexes. J Chem Pharm Res. 2010;2:533–8.

  19. 19.

    Comba P, Lampeka YD, Nazarenko AY, Prikhod’ko AI, Pritzkow H. Interactions between copper(II) complexes of mono-, bis-, and tris(macrocyclic) ligands and inorganic or organic guests. Eur J Inorg Chem. 2002;2002:1464–74.

  20. 20.

    Olar R, Badea M, Marinescu D, Calu L, Bucur C. Thermal behaviour of some new complexes with bismacrocyclic ligands as potential biological active species. J Therm Anal Calorim. 2011;105:571–5.

  21. 21.

    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.

  22. 22.

    Shakir M, Chishti H-T-N, Chingsubam P. Metal ion-directed synthesis of 16-membered tetraazamacrocyclic complexes and their physico-chemical studies. Spectrochim Acta Part A. 2006;64:512–7.

  23. 23.

    Siddiqi ZA, Kumar S, Khalid M, Shahid M. Novel homo-bimetallic complexes of [N10] macrocyclic ligand modified with tetrapeptide function: biological activities, spectral and cyclic voltammetric studies. Spectrochim Acta Part A. 2009;72:970–4.

  24. 24.

    Rastogi A, Nayan R. Studies on copper(II) complexes of some polyaza macrocycles derived from 1,2-diaminoethane. J Coord Chem. 2009;62:3366–76.

  25. 25.

    Deacon GB, Philips JR. Relationships between the carbon oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

  26. 26.

    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

  27. 27.

    Lever ABP. Inorganic electronic spectroscopy. Amsterdam/London/New York: Elsevier; 1986.

  28. 28.

    Golchoubian H, Nazari O, Benson K. A new copper(II) complex of unsymmetrical tetradentate ligand generated in situ: synthesis and molecular structure. Inorg Chim Acta. 2010;363:2673–6.

  29. 29.

    Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.

  30. 30.

    Abd El-Halim HF, Nour El-Dien FA, Mohamed GG, Mohamed NA. Synthesis, spectroscopic, thermal characterization, and antimicrobial activity of miconazole drug and its metal complexes. J Therm Anal Calorim. 2010. doi:10.1007/s10973-011-1784-2.

  31. 31.

    Turkyilmaz M, Onder A, Baran Y. Synthesis, spectroscopic, and thermal properties of some azomethine complexes of Cu(II), Ni(II), and Pt(II). J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1808-y.

Download references

Author information

Correspondence to Mihaela Badea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bucur, C., Badea, M., Larisa, C. et al. Thermal behaviour of some new complexes with decaaza bismacrocyclic ligand as potential antimicrobial species. J Therm Anal Calorim 110, 235–241 (2012).

Download citation


  • Complexes
  • Bismacrocycle
  • One pot condensation
  • 1,2-Phenylenediamine
  • Thermal behaviour