Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 1, pp 235–241 | Cite as

Thermal behaviour of some new complexes with decaaza bismacrocyclic ligand as potential antimicrobial species

  • Cristina Bucur
  • Mihaela Badea
  • Calu Larisa
  • Dana Marinescu
  • Maria Nicoleta Grecu
  • Nicolae Stanica
  • Mariana Carmen Chifiriuc
  • Rodica Olar
Article

Abstract

Novel complexes of type M2L(CH3COO)4·nH2O (M:Ni, n = 4; M:Cu, n = 2 and M:Zn, n = 0; L: ligand resulted in 1,2-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde template condensation) were synthesised and characterised. The features of complexes have been assigned from microanalytical, IR, UV–Vis, 1H NMR, EPR as well as magnetic data at room temperature. Processes as water elimination as well as oxidative degradation of both organic components (bismacrocycle and acetate) were observed. The final product of decomposition was metal (II) oxide as powder X-ray diffraction indicates.

Keywords

Complexes Bismacrocycle One pot condensation 1,2-Phenylenediamine Thermal behaviour 

References

  1. 1.
    Kaden TA. Dinuclear metal complexes of bis-macrocycles. Coord Chem Rev. 1999;190–192:371–89.CrossRefGoogle Scholar
  2. 2.
    Chartres JD, Lindoy LF, Meehan GV. Transition and post-transition metal systems incorporating linked synthetic macrocycles as structural elements. Coord Chem Rev. 2001;216–217:249–86.CrossRefGoogle Scholar
  3. 3.
    Collin JP, Jouaiti A, Sauvage JP. Electrocatalytic properties of (tetraazacyclotetradecane)nickel(2+) and Ni2(biscyclam)4+ with respect to carbon dioxide and water reduction. Inorg Chem. 1988;27:1986–90.CrossRefGoogle Scholar
  4. 4.
    Mochizuki K, Manaka S, Takeda I, Kondo T. Synthesis and Structure of [6,6′-bi(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II) Triflate and its catalytic activity for photochemical CO2 reduction. Inorg Chem. 1996;35:5132–6.CrossRefGoogle Scholar
  5. 5.
    de Alwis C, Crayston JA, Cromie T, Eisenblätter T, Hay RW, Lampeka YaD, Tsymbal LV. Cyclic voltammetry study of the electrocatalysis of carbon dioxide reduction by bis(polyazamacrocyclic) nickel complexes. Electrochim Acta. 2000;45:2061–74.CrossRefGoogle Scholar
  6. 6.
    Salavati-Niasari M, Bazarganipour M. Bis(macrocyclic) copper(II) complexes containing aromatic nitrogen–nitrogen linkers produced by in situ one pot template condensation reaction (IOPTCR): synthesis, characterization and catalytic oxidation of tetrahydrofuran. Inorg Chem Commun. 2006;9:332–6.CrossRefGoogle Scholar
  7. 7.
    Salavati-Niasari M, Amiri A. Binuclear copper(II) complexes of new bis(macrocyclic) 16-membered pentaaza subunits are linked together by bridging nitrogen of amine: Synthesis, characterization and catalytic activity. J Mol Catal A Chem. 2005;235:114–21.CrossRefGoogle Scholar
  8. 8.
    Salavati-Niasari M. 16-membered pentaaza bis(macrocyclic) nickel(II) complexes containing aromatic nitrogen–nitrogen linkers, {[Ni([16]aneN5)]2R}(ClO4)4: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. J Mol Catal A Chem. 2007;272:207–12.CrossRefGoogle Scholar
  9. 9.
    Mochizuki K, Sugita T, Yamada F, Mochizuki N, Hayano K, Ohgami Y. New bis(macrocyclic) dinickel(II) complexes obtained by oxidation of bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,7-dien-6-yl)dinickel(II) perchlorate. Inorg Chim Acta. 2009;362:1204–8.CrossRefGoogle Scholar
  10. 10.
    Hunter TM, McNae IW, Simpson DP, Smith AM, Moggach S, White F, Walkinshaw MD, Parsons S, Sadler PJ. Configurations of Nickel–cyclam antiviral complexes and protein recognition. Chem Eur J. 2007;13:40–50.CrossRefGoogle Scholar
  11. 11.
    Valks GC, McRobbie G, Lewis EA, Hubin TJ, Hunter TM, Sadler PJ, Pannecouque C, De Clercq E, Archibald SJ. Configurationally restricted bismacrocyclic CXCR4 receptor antagonists. J Med Chem. 2006;49:6162–5.CrossRefGoogle Scholar
  12. 12.
    McRobbie G, Valks GC, Empson CJ, Khan A, Silversides JD, Pannecouque C, De Clercq E, Fiddy SG, Bridgeman AJ, Young NA, Archibald SJ. Probing key coordination interactions: configurationally restricted metal activated CXCR4 antagonists. Dalton Trans. 2007;5008–18.Google Scholar
  13. 13.
    Khan A, Nicholson G, Greenman J, Madden L, McRobbie G, Pannecouque C, De Clercq E, Ullom R, Maples DL, Maples RD, Silversides JD, Hubin TJ, Archibald SJ. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J Am Chem Soc. 2009;131:3416–7.CrossRefGoogle Scholar
  14. 14.
    Lindoy LF. The Chemistry of macrocyclic ligand complexes. Cambridge: Cambridge University Press; 1989.CrossRefGoogle Scholar
  15. 15.
    Kang S-G, Ryu K, Jung S-K, Kim C-S. Template synthesis and characterization of copper(II) complexes of a polyaza non-macrocyclic or a bis(macrocyclic) ligand. Bull Korean Chem Soc. 1996;17:331–4.Google Scholar
  16. 16.
    Bernhardt PV, Kim JY, Kim Y, Lee YH, Chow S. Macrocycles and medicine—facile synthesis of a bis(macrocycle) with pendent functionality. C R Chim. 2005;8:211–4.CrossRefGoogle Scholar
  17. 17.
    Singh AK, Panwar A, Singh R, Baniwal S. New bis-macrocyclic complexes with transition metal ions. Trans Met Chem. 2003;28:160–2.CrossRefGoogle Scholar
  18. 18.
    Chandra S, Jain D, Ratnam B. Synthesis and spectroscopic characterization of copper (II) metal complexes of a 16 membered pentaaza (N5) bis(macrocyclic) complexes. J Chem Pharm Res. 2010;2:533–8.Google Scholar
  19. 19.
    Comba P, Lampeka YD, Nazarenko AY, Prikhod’ko AI, Pritzkow H. Interactions between copper(II) complexes of mono-, bis-, and tris(macrocyclic) ligands and inorganic or organic guests. Eur J Inorg Chem. 2002;2002:1464–74.CrossRefGoogle Scholar
  20. 20.
    Olar R, Badea M, Marinescu D, Calu L, Bucur C. Thermal behaviour of some new complexes with bismacrocyclic ligands as potential biological active species. J Therm Anal Calorim. 2011;105:571–5.CrossRefGoogle Scholar
  21. 21.
    Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.CrossRefGoogle Scholar
  22. 22.
    Shakir M, Chishti H-T-N, Chingsubam P. Metal ion-directed synthesis of 16-membered tetraazamacrocyclic complexes and their physico-chemical studies. Spectrochim Acta Part A. 2006;64:512–7.CrossRefGoogle Scholar
  23. 23.
    Siddiqi ZA, Kumar S, Khalid M, Shahid M. Novel homo-bimetallic complexes of [N10] macrocyclic ligand modified with tetrapeptide function: biological activities, spectral and cyclic voltammetric studies. Spectrochim Acta Part A. 2009;72:970–4.CrossRefGoogle Scholar
  24. 24.
    Rastogi A, Nayan R. Studies on copper(II) complexes of some polyaza macrocycles derived from 1,2-diaminoethane. J Coord Chem. 2009;62:3366–76.CrossRefGoogle Scholar
  25. 25.
    Deacon GB, Philips JR. Relationships between the carbon oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  26. 26.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.Google Scholar
  27. 27.
    Lever ABP. Inorganic electronic spectroscopy. Amsterdam/London/New York: Elsevier; 1986.Google Scholar
  28. 28.
    Golchoubian H, Nazari O, Benson K. A new copper(II) complex of unsymmetrical tetradentate ligand generated in situ: synthesis and molecular structure. Inorg Chim Acta. 2010;363:2673–6.CrossRefGoogle Scholar
  29. 29.
    Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.CrossRefGoogle Scholar
  30. 30.
    Abd El-Halim HF, Nour El-Dien FA, Mohamed GG, Mohamed NA. Synthesis, spectroscopic, thermal characterization, and antimicrobial activity of miconazole drug and its metal complexes. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-011-1784-2.
  31. 31.
    Turkyilmaz M, Onder A, Baran Y. Synthesis, spectroscopic, and thermal properties of some azomethine complexes of Cu(II), Ni(II), and Pt(II). J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1808-y.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Cristina Bucur
    • 1
  • Mihaela Badea
    • 2
  • Calu Larisa
    • 2
  • Dana Marinescu
    • 2
  • Maria Nicoleta Grecu
    • 3
  • Nicolae Stanica
    • 4
  • Mariana Carmen Chifiriuc
    • 5
  • Rodica Olar
    • 2
  1. 1.Institute for Control of Biological Products and Veterinary MedicinesBucharestRomania
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  3. 3.National Institute for Materials PhysicsMagurele, BucharestRomania
  4. 4.Romanian Academy, “Ilie Murgulescu” Physical Chemistry InstituteBucharestRomania
  5. 5.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania

Personalised recommendations