Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 3, pp 1079–1084 | Cite as

Nanocrystalline TiO2/SnO2 composites for gas sensors

  • M. Radecka
  • A. Kusior
  • A. Lacz
  • A. Trenczek-Zajac
  • B. Lyson-Sypien
  • K. Zakrzewska
Article

Abstract

TiO2/SnO2 nanocomposites are studied as potential candidates for gas sensors. Commercial metal oxide nanopowders milled for 1 h in ethanol are used for preparing nanocomposites with varied composition from 100 mol% TiO2 to 100 mol% SnO2. Brunauer–Emmett–Teller (BET) adsorption isotherms served to determine specific surface area, SSA. The particle size distribution is established by means of Dynamic Light Scattering, DLS technique. Differential Thermal Analysis and Thermogravimetry, DTA/TG measurements within the temperature range of 20–900 °C indicate better stability of nanomaterials composed of bigger particles or agglomerates. The total mass loss varies from 0.9 to 8.5% for 100 mol% SnO2 and 100 mol% TiO2, respectively. The only gaseous products of decomposition are water and carbon dioxide. X-ray diffraction analysis of nanocomposites indicates two separate phases of different crystallite size, i.e., smaller rutile TiO2 (9 nm) and larger cassiterite SnO2 (28 nm). Gas sensor dynamic responses at 400 °C to the reducing gas—ammonia (NH3) are detected in the concentration range extending from 100 ppm to −5000 ppm. Nanosensor of 50 mol% SnO2/50 mol% TiO2 is stable and sensitive to the interaction with NH3 and gives the highest response at 400 °C.

Keywords

TiO2 SnO2 Gas sensors Nanopowders Composites Differential thermal analysis Thermogravimetry Mass spectrometry 

Notes

Acknowledgment

This work was supported by the Polish Ministry of Science and Higher Education (2009–2012) grant no. N N507 466537.

References

  1. 1.
    Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuators B. 1991;5:7–19.CrossRefGoogle Scholar
  2. 2.
    Di Francia G, Alfano B, La Ferrara V. Conductometric gas sensors. Hindawi Publishing Corporation, Journal of Sensors, 2009. doi: 10.1155/2009/659275.
  3. 3.
    Timmer B, Olthuis W, van den Berg A. Ammonia sensors and their applications—a review. Sens Actuators B. 2005;107:666–77.CrossRefGoogle Scholar
  4. 4.
    Ivanov P, Hubalek J, Malysz K, Prášek J, Vilanowa X, Llobet E, Correig X. A route toward more selective and less humidity sensitive screen-printed SnO2 and WO3 gas sensitive layers. Sens Actuators B. 2004;100:221–7.CrossRefGoogle Scholar
  5. 5.
    Shimizu Y, Okamoto T, Takao Y, Egashira M. Desorption behavior of ammonia from TiO2-based specimens—ammonia sensing mechanism of double-layer sensors with TiO2-based catalyst layers. J Mol Catal A Chem. 2000;155:183–91.CrossRefGoogle Scholar
  6. 6.
    Zhang W, Zhang W. Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fish. Sens Actuators B. 2008;134:403–8.CrossRefGoogle Scholar
  7. 7.
    Yu JH, Choi GM. Electrical and CO gas sensing properties of ZnO–SnO2 composites. Sens Actuators B. 1998;52:251–6.CrossRefGoogle Scholar
  8. 8.
    Khorami HA, Keyanpour-Rad M, Vaezi MR. Synthesis of SnO2/ZnO composite nanofiber by electrospinning method and study of its ethanol sensing properties. Appl Surf Sci. 2011;257:7988–92.CrossRefGoogle Scholar
  9. 9.
    Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D. A selective NH3 gas sensor based of Fe2O3–ZnO nanocomposites at room temperature. Sens Actuators B. 2006;114:910–5.CrossRefGoogle Scholar
  10. 10.
    Kotsikau D, Ivanovskaya M, Orlik D, Falasconi H. Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites. Sens Actuators B. 2004;101:199–206.CrossRefGoogle Scholar
  11. 11.
    Rumyantseva M, Kovalenko V, Gaskov A, Makshina E, Yuschenko V, Ivanova I, Ponzoni A, Faglia G, Comini E. Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens Actuators B. 2006;118:208–14.CrossRefGoogle Scholar
  12. 12.
    Shouli B, Dianqing L, Dongmei H, Ruixian L, Aifan C, Liu CC. Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2. Sens Actuators B. 2010;150:749–55.CrossRefGoogle Scholar
  13. 13.
    Moon WJ, Yu JH, Choi GM. Selective gas detection of SnO2–TiO2 gas sensors. J Electron. 2004;13:707–13.Google Scholar
  14. 14.
    Aifan C, Shouli B, Bingjie S, Zhiyong L, Dianging L, Liu CC. Methane gas-sensing and catalytic oxidation activity of SnO2–In2O3 nanocomposites incorporating TiO2. Sens Actuators B. 2008;135:7–12.CrossRefGoogle Scholar
  15. 15.
    Shouli B, Liangyuan C, Pengcheng Y, Ruixian L, Aifan C, Liu CC. Sn/In/Ti nanocomposite sensor for CH4 detection. Sens Actuators B. 2008;135:1–6.CrossRefGoogle Scholar
  16. 16.
    Radecka M, Zakrzewska K, Rekas M. SnO2–TiO2 solid solutions for gas sensors. Sens Actuators B. 1998;47:193–9.CrossRefGoogle Scholar
  17. 17.
    Carotta MC, Gherardi S, Guidi V, Malagu C, Martinelli G, Vendemiati B, Sacerdoti M, Ghiotti G, Morandi S, Bismuto A, Maddalena P, Setaro A. (Ti, Sn)O2 binary solid solutions for gas sensing: spectroscopic, optical and transport properties. Sens Actuators B. 2008;130:38–45.CrossRefGoogle Scholar
  18. 18.
    Carotta MC, Gherardi S, Guidi V, Malagu C, Martinelli G, Vendemiati B, Sacerdoti M. Electrical and spectroscopic properties of Ti0.2Sn0.8 solid solution for gas sensing. Thin Solid Films. 2009;517:6176–83.CrossRefGoogle Scholar
  19. 19.
    Zeng W, Liu T, Wang Z. Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Phys E. 2010;43:633–8.CrossRefGoogle Scholar
  20. 20.
    Zakrzewska K, Radecka M. TiO2–SnO2 system for gas sensing—photodegradation of organic contaminants. Thin Solid Films. 2007;515:8332–8.CrossRefGoogle Scholar
  21. 21.
    Madarász J, Brăileanu A, Crişan M, Răileanu M, Pokol G. Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS. J Therm Anal Calorim. 2009;97:265–71.CrossRefGoogle Scholar
  22. 22.
    Sergent N, Gélin P, Périer-Camby L, Praliaud H, Thomas G. Study of the interactions between carbon monoxide and high specific surface area tin dioxide. Thermogravimetric analysis and FTIR spectroscopy. J Therm Anal Calorim. 2003;72:1117–26.CrossRefGoogle Scholar
  23. 23.
    Pulisova P, Bohacek J, Subrt J, Szatmary L, Bezdicka P, Vecernıkova E, Balek V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J Therm Anal Calorim. 2010;101:607–13.CrossRefGoogle Scholar
  24. 24.
    Crisan M, Braileanu A, Crisan D, Raileanu M, Dragan N, Mardare D, Teodorescu V, Ianculescu A, Birjega R, Dumitru M. Thermal behaviour study of some sol-gel TiO2 based materials. J Therm Anal Calorim. 2008;1:7–13.CrossRefGoogle Scholar
  25. 25.
    Banerjee S, Kumar A, Sujatha Devi P. Preparation of nanoparticles of oxides by the citrate-nitrate process. Effect of metal ions on the thermal decomposition characteristics. J Therm Anal Calorim. 2011;104:859–67.CrossRefGoogle Scholar
  26. 26.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • M. Radecka
    • 1
  • A. Kusior
    • 1
  • A. Lacz
    • 1
  • A. Trenczek-Zajac
    • 1
  • B. Lyson-Sypien
    • 2
  • K. Zakrzewska
    • 2
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland
  2. 2.Faculty of Electrical Engineering, Automatics, Computer Science and ElectronicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations